Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Med Chem ; 275: 116617, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38959729

RESUMO

Agents that cause apoptotic cell death by interfering with tubulin dynamics, such as vinblastine and paclitaxel, are an important class of chemotherapeutics. Unfortunately, these compounds are substrates for multidrug resistance (MDR) pumps, allowing cancer cells to gain resistance to these chemotherapeutics. The indolesulfonamide family of tubulin inhibitors are not excluded by MDR pumps and have a promising activity profile, although their high lipophilicity is a pharmacokinetic limitation for their clinical use. Here we present a new family of N-indolyl-3,4,5-trimethoxybenzenesulfonamide derivatives with modifications on the indole system at positions 1 and 3 and on the sulfonamide nitrogen. We synthesized and screened against HeLa cells 34 novel indolic benzenesulfonamides. The most potent derivatives (1.7-109 nM) were tested against a broad panel of cancer cell lines, which revealed that substituted benzenesulfonamides analogs had highest potency. Importantly, these compounds were only moderately toxic to non-tumorigenic cells, suggesting the presence of a therapeutic index. Consistent with known clinical anti-tubulin agents, these compounds arrested the cell cycle at G2/M phase. Mechanistically, they induced apoptosis via caspase 3/7 activation, which occurred during M arrest. The substituents on the sulfonamide nitrogen appeared to determine different mechanistic results and cell fates. These results suggest that the compounds act differently depending on the bridge substituents, thus making them very interesting as mechanistic probes as well as potential drugs for further development.


Assuntos
Antineoplásicos , Apoptose , Benzenossulfonamidas , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Indóis , Sulfonamidas , Humanos , Sulfonamidas/química , Sulfonamidas/farmacologia , Sulfonamidas/síntese química , Proliferação de Células/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Relação Estrutura-Atividade , Apoptose/efeitos dos fármacos , Estrutura Molecular , Indóis/química , Indóis/farmacologia , Indóis/síntese química , Relação Dose-Resposta a Droga , Nitrogênio/química , Linhagem Celular Tumoral , Células HeLa , Moduladores de Tubulina/farmacologia , Moduladores de Tubulina/química , Moduladores de Tubulina/síntese química
2.
Med Res Rev ; 44(3): 1055-1120, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38142308

RESUMO

Leishmaniasis is a group of neglected tropical diseases caused by at least 20 species of Leishmania protozoa, which are spread by the bite of infected sandflies. There are three main forms of the disease: cutaneous leishmaniasis (CL, the most common), visceral leishmaniasis (VL, also known as kala-azar, the most serious), and mucocutaneous leishmaniasis. One billion people live in areas endemic to leishmaniasis, with an annual estimation of 30,000 new cases of VL and more than 1 million of CL. New treatments for leishmaniasis are an urgent need, as the existing ones are inefficient, toxic, and/or expensive. We have revised the experimental structure-based drug design (SBDD) efforts applied to the discovery of new drugs against leishmaniasis. We have grouped the explored targets according to the metabolic pathways they belong to, and the key achieved advances are highlighted and evaluated. In most cases, SBDD studies follow high-throughput screening campaigns and are secondary to pharmacokinetic optimization, due to the majoritarian belief that there are few validated targets for SBDD in leishmaniasis. However, some SBDD strategies have significantly contributed to new drug candidates against leishmaniasis and a bigger number holds promise for future development.


Assuntos
Leishmania , Leishmaniose Cutânea , Leishmaniose Visceral , Humanos , Leishmaniose Visceral/tratamento farmacológico , Leishmaniose Visceral/complicações , Leishmaniose Visceral/epidemiologia , Leishmaniose Cutânea/tratamento farmacológico , Leishmaniose Cutânea/complicações , Leishmaniose Cutânea/epidemiologia , Ensaios de Triagem em Larga Escala
3.
Int J Mol Sci ; 24(24)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38139302

RESUMO

Antimitotic agents are one of the more successful types of anticancer drugs, but they suffer from toxicity and resistance. The application of approved drugs to new indications (i.e., drug repurposing) is a promising strategy for the development of new drugs. It relies on finding pattern similarities: drug effects to other drugs or conditions, similar toxicities, or structural similarity. Here, we recursively searched a database of approved drugs for structural similarity to several antimitotic agents binding to a specific site of tubulin, with the expectation of finding structures that could fit in it. These searches repeatedly retrieved frentizole, an approved nontoxic anti-inflammatory drug, thus indicating that it might behave as an antimitotic drug devoid of the undesired toxic effects. We also show that the usual repurposing approach to searching for targets of frentizole failed in most cases to find such a relationship. We synthesized frentizole and a series of analogs to assay them as antimitotic agents and found antiproliferative activity against HeLa tumor cells, inhibition of microtubule formation within cells, and arrest at the G2/M phases of the cell cycle, phenotypes that agree with binding to tubulin as the mechanism of action. The docking studies suggest binding at the colchicine site in different modes. These results support the repurposing of frentizole for cancer treatment, especially for glioblastoma.


Assuntos
Antimitóticos , Antineoplásicos , Antimitóticos/farmacologia , Tubulina (Proteína)/metabolismo , Linhagem Celular Tumoral , Relação Estrutura-Atividade , Colchicina/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Moduladores de Tubulina/química , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células , Sítios de Ligação
4.
Int J Mol Sci ; 24(13)2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37446273

RESUMO

Increasing awareness of the structure of microtubules has made tubulin a relevant target for the research of novel chemotherapies. Furthermore, the particularly high sensitivity of glioblastoma multiforme (GBM) cells to microtubule disruption could open new doors in the search for new anti-GBM treatments. However, the difficulties in developing potent anti-tubulin drugs endowed with improved pharmacokinetic properties necessitates the expansion of medicinal chemistry campaigns. The application of an ensemble pharmacophore screening methodology helped to optimize this process, leading to the development of a new tetrazole-based tubulin inhibitor. Considering this scaffold, we have synthesized a new family of tetrazole derivatives that achieved remarkable antimitotic effects against a broad panel of cancer cells, especially against GBM cells, showing high selectivity in comparison with non-tumor cells. The compounds also exerted high aqueous solubility and were demonstrated to not be substrates of efflux pumps, thus overcoming the main limitations that are usually associated with tubulin binding agents. Tubulin polymerization assays, immunofluorescence experiments, and flow cytometry studies demonstrated that the compounds target tubulin and arrest cells at the G2/M phase followed by induction of apoptosis. The docking experiments agreed with the proposed interactions at the colchicine site and explained the structure-activity relationships.


Assuntos
Antineoplásicos , Glioblastoma , Humanos , Tubulina (Proteína)/metabolismo , Glioblastoma/tratamento farmacológico , Antineoplásicos/uso terapêutico , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células , Relação Estrutura-Atividade , Moduladores de Tubulina/química , Colchicina/farmacologia , Linhagem Celular Tumoral , Tetrazóis/farmacologia , Estrutura Molecular , Simulação de Acoplamento Molecular
5.
Pharmaceutics ; 15(6)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37376146

RESUMO

The design of colchicine site ligands on tubulin has proven to be a successful strategy to develop potent antiproliferative drugs against cancer cells. However, the structural requirements of the binding site endow the ligands with low aqueous solubility. In this work, the benzothiazole scaffold is used to design, synthesize, and evaluate a new family of colchicine site ligands exhibiting high water solubility. The compounds exerted antiproliferative activity against several human cancer cell lines, due to tubulin polymerization inhibition, showing high selectivity toward cancer cells in comparison with non-tumoral HEK-293 cells, as evidenced by MTT and LDH assays. The most potent derivatives, containing a pyridine moiety and ethylurea or formamide functionalities, displayed IC50 values in the nanomolar range even in the difficult-to-treat glioblastoma cells. Flow cytometry experiments on HeLa, MCF7, and U87MG cells showed that they arrest the cell cycle at the G2/M phases at an early time point (24 h), followed by apoptotic cell death 72 h after the treatment. Tubulin binding was confirmed by microtubule network disruption observed via confocal microscopy. Docking studies support favorable interaction of the synthesized ligands at the colchicine binding site. These results validate the proposed strategy to develop potent anticancer colchicine ligands with improved water solubility.

6.
Comput Struct Biotechnol J ; 19: 4360-4372, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34429853

RESUMO

Tubulin is a well-validated target for herbicides, fungicides, anti-parasitic, and anti-tumor drugs. Many of the non-cancer tubulin drugs bind to its colchicine site but no colchicine-site anticancer drug is available. The colchicine site is composed of three interconnected sub-pockets that fit their ligands and modify others' preference, making the design of molecular hybrids (that bind to more than one sub-pocket) a difficult task. Taking advantage of the more than eighty published X-ray structures of tubulin in complex with ligands bound to the colchicine site, we generated an ensemble of pharmacophore representations that flexibly sample the interactional space between the ligands and target. We searched the ZINC database for scaffolds able to fit several of the subpockets, such as tetrazoles, sulfonamides and diarylmethanes, selected roughly ~8000 compounds with favorable predicted properties. A Flexi-pharma virtual screening, based on ensemble pharmacophore, was performed by two different methodologies. Combining the scaffolds that best fit the ensemble pharmacophore-representation, we designed a new family of ligands, resulting in a novel tubulin modulator. We synthesized tetrazole 5 and tested it as a tubulin inhibitor in vitro. In good agreement with the design principles, it demonstrated micromolar activity against in vitro tubulin polymerization and nanomolar anti-proliferative effect against human epithelioid carcinoma HeLa cells through microtubule disruption, as shown by immunofluorescence confocal microscopy. The integrative methodology succedes in the design of new scaffolds for flexible proteins with structural coupling between pockets, thus expanding the way in which computational methods can be used as significant tools in the drug design process.

7.
Eur J Med Chem ; 223: 113656, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34171660

RESUMO

In this study, a variety of original ligands related to Combretastatin A-4 and isoCombretastatin A-4, able to inhibit the tubulin polymerization into microtubules, was designed, synthesized, and evaluated. Our lead compound 15d having a quinazoline as A-ring and a 2-substituted indole as B-ring separated by a N-methyl linker displayed a remarkable sub-nanomolar level of cytotoxicity (IC50 < 1 nM) against 9 human cancer cell lines.


Assuntos
Antineoplásicos/farmacologia , Indóis/química , Estilbenos/química , Moduladores de Tubulina/química , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Sítios de Ligação , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Estabilidade de Medicamentos , Humanos , Indóis/metabolismo , Indóis/farmacologia , Microssomos Hepáticos/metabolismo , Simulação de Acoplamento Molecular , Ratos , Estilbenos/metabolismo , Estilbenos/farmacologia , Relação Estrutura-Atividade , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/metabolismo , Moduladores de Tubulina/farmacologia
8.
Carbohydr Polym ; 252: 117135, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33183594

RESUMO

Cyclodextrin-calixarene giant amphiphiles that can self-assemble into nanospheres or nanovesicles have the ability to encapsulate the anticancer hydrophobic drugs docetaxel, temozolomide and combretastatin A-4 with encapsulation efficiencies >80% and deliver them to tumoral cells, enhancing their therapeutic efficacy by 1-3 orders of magnitude. These amphiphiles were modified by inserting a disulfide bridge confering them redox responsiveness. Disassembly of the resulting nanocompounds and cargo release was favored by high glutathione levels mimicking those present in the tumor microenvironment. Anticancer drug-loaded nanoformulations inhibited prostate, breast, glioblastoma, colon or cervix cancer cell lines proliferation with IC50 values markedly below those observed for the free drugs. Cell-cycle analysis indicated a similar mechanism of action for drug-loaded nanocompounds and free drugs. The results strongly suggest that the cyclodextrin-calixarene heterodimer prototype is an excellent scaffold for nanoformulations aimed to deliver anticancer drugs with limited bioavailability due to low solubility to tumoral cells, markedly increasing their effectivity.


Assuntos
Antineoplásicos , Calixarenos/química , Proliferação de Células/efeitos dos fármacos , Ciclodextrinas/química , Portadores de Fármacos , Nanosferas/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Disponibilidade Biológica , Linhagem Celular Tumoral , Portadores de Fármacos/síntese química , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Humanos , Interações Hidrofóbicas e Hidrofílicas
9.
Molecules ; 24(23)2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31779228

RESUMO

Colchicine site ligands suffer from low aqueous solubility due to the highly hydrophobic nature of the binding site. A new strategy for increasing molecular polarity without exposing polar groups-termed masked polar group incorporation (MPGI)-was devised and applied to nitrogenated combretastatin analogues. Bulky ortho substituents to the pyridine nitrogen hinder it from the hydrophobic pocket while increasing molecular polarity. The resulting analogues show improved aqueous solubilities and highly potent antiproliferative activity against several cancer cell lines of different origin. The more potent compounds showed moderate tubulin polymerization inhibitory activity, arrested the cell cycle of treated cells at the G2/M phase, and subsequently caused apoptotic cell death represented by the cells gathered at the subG0/G1 population after 48 h of treatment. Annexin V/Propidium Iodide (PI) double-positive cells observed after 72 h confirmed the induction of apoptosis. Docking studies suggest binding at the colchicine site of tubulin in a similar way as combretastatin A4, with the polar groups masked by the vicinal substituents. These results validate the proposed strategy for the design of colchicine site ligands and open a new road to increasing the aqueous solubility of ligands binding in apolar environments.


Assuntos
Bibenzilas/química , Nitrogênio/química , Moduladores de Tubulina/química , Tubulina (Proteína)/metabolismo , Apoptose/efeitos dos fármacos , Sítios de Ligação , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células , Colchicina/química , Desenho de Fármacos , Células HT29 , Células HeLa , Humanos , Ligantes , Células MCF-7 , Simulação de Acoplamento Molecular , Piridinas/química , Solubilidade/efeitos dos fármacos , Relação Estrutura-Atividade
10.
Chemistry ; 24(15): 3825-3835, 2018 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-29341305

RESUMO

Engineering self-assembled superstructures through complexation of plasmid DNA (pDNA) and single-isomer nanometric size macromolecules (molecular nanoparticles) is a promising strategy for gene delivery. Notably, the functionality and overall architecture of the vector can be precisely molded at the atomic level by chemical tailoring, thereby enabling unprecedented opportunities for structure/self-assembling/pDNA delivery relationship studies. Beyond this notion, by judiciously preorganizing the functional elements in cyclodextrin (CD)-based molecular nanoparticles through covalent dimerization, here we demonstrate that the morphology of the resulting nanocomplexes (CDplexes) can be tuned, from spherical to ellipsoidal, rod-type, or worm-like nanoparticles, which makes it possible to gain understanding of their shape-dependent transfection properties. The experimental findings are in agreement with a shift from chelate to cross-linking interactions on going from primary-face- to secondary-face-linked CD dimers, the pDNA partner acting as an active payload and as a template. Most interestingly, the transfection efficiency in different cells was shown to be differently impacted by modifications of the CDplex morphology, which has led to the identification of an optimal prototype for tissue-selective DNA delivery to the spleen in vivo.


Assuntos
Ciclodextrinas/química , DNA/química , Técnicas de Transferência de Genes , Terapia Genética , Humanos , Nanopartículas/química , Plasmídeos , Polímeros/química , Baço/efeitos dos fármacos , Transfecção
11.
Nanomedicine (Lond) ; 12(13): 1607-1621, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28621615

RESUMO

AIM: To study the structural requirements that a cyclooligosaccharide-based nanoparticle must fulfill to be an efficient siRNA transfection vector. MATERIALS & METHODS: siRNA protection from degradation by RNAses, transfection efficiency and the thermodynamic parameters of the nanoparticle/siRNA interactions were studied on pairs of amphiphilic molecules using biochemical techniques and molecular dynamics. RESULTS: The lower the siRNA solvent accessible surface area in the presence of the nanoparticle, higher the protection from RNAse-mediated degradation in the corresponding nanocomplex; a moderate nanoparticle/siRNA binding energy value further facilitates reversible complexation and binding to the target cellular mRNA. CONCLUSION: The use, in advance, of these parameters will provide a useful indication of the potential of a molecular nanoparticle as siRNA transfecting vector.


Assuntos
Nanopartículas/química , Oligossacarídeos/química , RNA Interferente Pequeno/genética , Transfecção/métodos , Animais , Técnicas de Cultura de Células , Linhagem Celular , Corantes Fluorescentes , Técnicas de Silenciamento de Genes , Humanos , Interações Hidrofóbicas e Hidrofílicas , Simulação de Dinâmica Molecular , Ratos
12.
Front Pharmacol ; 8: 249, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28533751

RESUMO

Giant amphiphiles encompassing a hydrophilic ß-cyclodextrin (ßCD) component and a hydrophobic calix[4]arene (CA4) module undergo self-assembly in aqueous media to afford core-shell nanospheres or nanocapsules, depending on the nanoprecipitation protocol, with high docetaxel (DTX) loading capacity. The blank and loaded nanoparticles have been fully characterized by dynamic light scattering (DLS), ζ-potential measurements and cryo-transmission electron microscopy (cryo-TEM). The data are compatible with the distribution of the drug between the nanoparticle core and the shell, where it is probably anchored by inclusion of the DTX aromatic moieties in ßCD cavities. Indeed, the release kinetics profiles evidenced an initial fast release of the drug, which likely accounts for the fraction hosted on the surface, followed by a slow and sustained release rate, corresponding to diffusion of DTX in the core, which can be finely tuned by modification of the giant amphiphile chemical structure. The ability of the docetaxel-loaded nanoparticles to induce cellular death in different prostate (human LnCap and PC3) and glioblastoma (human U87 and rat C6) cells was also explored. Giant amphiphile-based DTX formulations surpassing or matching the antitumoral activity of the free DTX formulation were identified in all cases with no need to employ any organic co-solvent, thus overcoming the DTX water solubility problems. Moreover, the presence of the ßCD shell at the surface of the assemblies is intended to impart stealth properties against serum proteins while permitting nanoparticle surface decoration by supramolecular approaches, paving the way for a new generation of molecularly well-defined antitumoral drug delivery systems with improved specificity and efficiency. Altogether, the results provide a proof of concept of the suitability of the approach based on ßCD-CA4 giant amphiphiles to access DTX carriers with tunable properties.

13.
Chemistry ; 21(34): 12093-104, 2015 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-26184887

RESUMO

Only a few examples of monodisperse molecular entities that can compact exogenous nucleic acids into nanocomplexes, protect the cargo from the biological environment, facilitate cell internalization, and promote safe transfection have been reported up to date. Although these species open new venues for fundamental studies on the structural requirements that govern the intervening processes and their application in nonviral gene-vector design, the synthesis of these moieties generally requires a relatively sophisticated chemistry, which hampers further development in gene therapy. Herein, we report an original strategy for the reversible complexation and delivery of DNA based on the supramolecular preorganization of a ß-cyclodextrin-scaffolded polycationic cluster facilitated by bisadamantane guests. The resulting gemini-type, dual-cluster supramolecules can then undergo DNA-templated self-assembly at neutral pH value by bridging parallel DNA oligonucleotide fragments. This hierarchical DNA condensation mechanism affords transfectious nanoparticles with buffering capabilities, thus facilitating endosomal escape following cell internalization. Protonation also destabilizes the supramolecular dimers and consequently the whole supramolecular edifice, thus assisting DNA release. Our advanced hypotheses are supported by isothermal titration calorimetry, NMR and circular dichroism spectroscopic analysis, gel electrophoresis, dynamic light scattering, TEM, molecular mechanics, molecular dynamics, and transfection studies conducted in vitro and in vivo.


Assuntos
DNA/química , Nanopartículas/química , Oligonucleotídeos/química , Fragmentos de Peptídeos/química , Poliaminas/química , beta-Ciclodextrinas/química , Linhagem Celular , DNA/metabolismo , Técnicas de Transferência de Genes , Terapia Genética , Humanos , Concentração de Íons de Hidrogênio , Oligonucleotídeos/metabolismo , Fragmentos de Peptídeos/metabolismo , Polieletrólitos , Transfecção
14.
Org Biomol Chem ; 13(6): 1708-23, 2015 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-25474077

RESUMO

Multi-head/multi-tail facial amphiphiles built on cyclodextrin (CD) and calixarene (CA) scaffolds are paradigmatic examples of monodisperse gene delivery systems. The possibility to precisely control the architectural features at the molecular level offers unprecedented opportunities for conducting structure-activity relationship studies. A major requirement for those channels is the design of a sufficiently diverse ensemble of compounds for parallel evaluation of their capabilities to condense DNA into transfection nanoparticles where the gene material is protected from the environment. Here we have undertaken the preparation of an oriented library of ß-cyclodextrin (ßCD) and calix[4]arene (CA4) vectors with facial amphiphilic character designed to ascertain the effect of the cationic head nature (aminothiourea-, arginine- or guanidine-type groups) and the macrocyclic platform on the abilities to complex plasmid DNA (pDNA) and in the efficiency of the resulting nanocomplexes to transfect cells in vitro. The hydrophobic domain, formed by hexanoyl or hexyl chains, remains constant in each series, matching the overall structure found to be optimal in previous studies. DLS, TEM and AFM data support that all the compounds self-assemble in the presence of pDNA through a process that involves initially electrostatic interactions followed by formation of ßCD or CA4 bilayers between the oligonucleotide filaments. Spherical transfectious nanoparticles that are monomolecular in DNA are thus obtained. Evaluation in epithelial COS-7 and human rhabdomyosarcoma RD-4 cells evidenced the importance of having primary amino groups in the vector to warrant high levels of transfection, probably because of their buffering capacity. The results indicate that the optimal cationic head depends on the macrocyclic core, aminothiourea groups being preferred in the ßCD series and arginine groups in the CA4 series. Whereas the transfection efficiency relationships remain essentially unchanged within each series, irrespective of the cell type, the optimal platform (ßD or CA4) strongly depends on the cell type. The results illustrate the potential of monodisperse vector prototypes and diversity-oriented strategies on identifying the optimal candidates for gene therapy applications.


Assuntos
Calixarenos/química , Ciclodextrinas/química , Técnicas de Transferência de Genes , Polímeros/química , Tensoativos/química , Animais , Células COS , Cátions/síntese química , Cátions/química , Linhagem Celular Tumoral , Sobrevivência Celular , Chlorocebus aethiops , Humanos , Polímeros/síntese química , Relação Estrutura-Atividade , Tensoativos/síntese química
15.
Chem Commun (Camb) ; 50(56): 7440-3, 2014 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-24875493

RESUMO

Stable core-shell nanospheres self-assemble in water from heterodimers combining a hydrophobic calix[4]arene moiety and a hydrophilic ß-cyclodextrin head; their potential to encapsulate and provide sustained release of the anticancer drug docetaxel and undergo surface post-modification with glycoligands targeting the macrophage mannose receptor is discussed.


Assuntos
Calixarenos/química , Ciclodextrinas/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Nanosferas/química , Calixarenos/farmacocinética , Ciclodextrinas/farmacocinética , Portadores de Fármacos/farmacocinética , Sistemas de Liberação de Medicamentos/tendências , Humanos , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Nanosferas/metabolismo
16.
Chemistry ; 20(22): 6622-7, 2014 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-24740814

RESUMO

The ability of cyclodextrin-based polycationic cluster to undergo reversible DNA condensation and release in a physiologically useful pH window has been finely tuned by the installation of a capping xylylene moiety at the secondary face of the cyclooligosaccharide. This strategy can be exploited advantageously in the design of self-assembling nonviral gene-delivery systems from molecular entities.


Assuntos
Ciclodextrinas/química , DNA/química , Nanoestruturas/química , Animais , Células COS , Chlorocebus aethiops , Dicroísmo Circular , DNA/metabolismo , Dimerização , Concentração de Íons de Hidrogênio , Poliaminas/química , Polieletrólitos , Transfecção
17.
Chemistry ; 19(2): 729-38, 2013 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-23169428

RESUMO

We designed a set of multi-galactosides with valencies ranging from one to seven and different spacer-arm lengths. The compounds display a high structural homology for a strict assessment of multivalent phenomena. The multimers were first evaluated by an enzyme-linked lectin assay (ELLA) toward the peanut agglutinin (PNA). The binding affinity was shown to be dependent on the spacer-arm length, and cluster effects were observed for the galactosides bearing the shortest and the longest linkers. The latter compounds were shown to be much more potent PNA cross-linkers in a "sandwich assay". Dynamic light scattering (DLS) experiments also revealed the formation of soluble aggregates between heptavalent derivatives with medium or long linkers and the labeled PNA. ELLA experiments performed with valency-controlled clusters and labeled lectins are therefore not always devoid from aggregative processes. The precise nature of the multivalent interaction observed by ELLA for the compounds bearing the shortest linkers, which are unable to form PNA aggregates, was further investigated by atomic force microscopy (AFM). The galactosides were grafted onto the tip of a cantilever and the PNA lectin onto a gold surface. Similar unbinding forces were registered when the valency of the ligands was increased, thus showing that the multimers cannot interact more strongly with PNA. Multiple binding events to the PNA were also never observed, thus confirming that a chelate binding mode does not operate with the multivalent galactosides, probably because the linkers are too short. Altogether, these results suggest that the cluster effect that operates in ELLA with the multimers is not related to additional PNA stabilizations and can be ascribed to local concentration effects that favor a dynamic turnover of the tethered galactosides in the PNA binding sites.


Assuntos
Galactosídeos/química , Galactosídeos/metabolismo , Aglutinina de Amendoim/química , Aglutinina de Amendoim/metabolismo , Configuração de Carboidratos , Química Click , Galactosídeos/síntese química , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...