Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(16)2024 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-39203174

RESUMO

Corrosion is an inevitable and persistent issue that affects various metallic infrastructures, leading to significant economic losses and safety concerns, particularly in areas near or in contact with saline solutions such as seawater. Green corrosion inhibitors are compounds derived from natural sources that are biodegradable in various environments, offering a promising alternative to their conventional counterparts. Despite their potential, green corrosion inhibitors still face several limitations and challenges when exposed to NaCl environments. This comprehensive review delves into these limitations and associated challenges, shedding light on the progress made in addressing these issues and potential future developments as tools in corrosion management. Explicitly the following aspects are covered: (1) attributes of corrosion inhibitors, (2) general corrosion mechanism, (3) mechanism of corrosion inhibition in NaCl, (4) typical electrochemical and surface characterization techniques, (5) theoretical simulations by Density Functional Theory, and (6) corrosion testing standards and general guidelines for corrosion inhibitor selection. This review is expected to advance the knowledge of green corrosion inhibitors and promote further research and applications.

2.
Materials (Basel) ; 17(16)2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39203231

RESUMO

Solar thermal plants typically undergo trough operational cycles spanning between 20 and 25 years, highlighting the critical need for accurate assessments of long-term component evolution. Among these components, the heat storage media (molten salt) is crucial in plant design, as it significantly influences both the thermophysical properties of the working fluid and the corrosion of the steel components in thermal storage systems. Our research focused on evaluating the long-term effects of operating a low-melting-point ternary mixture consisting of 30 wt% LiNO3, 57 wt% KNO3, and 13 wt% NaNO3. The ternary mixture exhibited a melting point of 129 °C and thermal stability above 550 °C. Over 15,000 h, the heat capacity decreased from 1.794 to 1.409 J/g °C. Additionally, saline components such as CaCO3 and MgCO3, as well as lithium oxides (LiO and LiO2), were detected due to the separation of the ternary mixture. A 30,000 h exposure resulted in the formation of Fe2O3 and the presence of Cl, indicating prolonged interaction with the marine environment. This investigation highlights the necessity of analyzing properties under actual operating conditions to accurately predict the lifespan and select the appropriate materials for molten salt-based thermal storage systems.

3.
Nanomaterials (Basel) ; 13(18)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37764586

RESUMO

The electrochemical ion pumping device is a promising alternative for the development of the industry of recovering metals from natural sources-such as seawater, geothermal water, well brine, or reverse osmosis brine-using electrochemical systems, which is considered a non-evaporative process. This technology is potentially used for metals like Li, Cu, Ca, Mg, Na, K, Sr, and others that are mostly obtained from natural brine sources through a combination of pumping, solar evaporation, and solvent extraction steps. As the future demand for metals for the electronic industry increases, new forms of marine mining processing alternatives are being implemented. Unfortunately, both land and marine mining, such as off-shore and deep sea types, have great potential for severe environmental disruption. In this context, a green alternative is the mixing entropy battery, which is a promising technique whereby the ions are captured from a saline natural source and released into a recovery solution with low ionic force using intercalation materials such as Prussian Blue Analogue (PBA) to store cations inside its crystal structure. This new technique, called "electrochemical ion pumping", has been proposed for water desalination, lithium concentration, and blue energy recovery using the difference in salt concentration. The raw material for this technology is a saline solution containing ions of interest, such as seawater, natural brines, or industrial waste. In particular, six main ions of interest-Na+, K+, Mg2+, Ca2+, Cl-, and SO42--are found in seawater, and they constitute 99.5% of the world's total dissolved salts. This manuscript provides relevant information about this new non-evaporative process for recovering metals from aqueous salty solutions using hexacianometals such as CuHCF, NiHCF, and CoHCF as electrodes, among others, for selective ion removal.

4.
Materials (Basel) ; 16(17)2023 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-37687743

RESUMO

Cellular automata models have emerged as a valuable tool in corrosion management. This manuscript provides an overview of the application of cellular automata models in corrosion research, highlighting their benefits and contributions to understanding the complex nature of corrosion processes. Cellular automata models offer a computational approach to simulating corrosion behavior at the microscale, capturing the intricate interactions between electrochemical reactions, material properties, and environmental factors and generating a new vision of predictive maintenance. It reviews the key features of cellular automata, such as the grid-based representation of the material surface, the definition of state variables, and the rules governing cell-state transitions. The ability to model local interactions and emergent global behavior makes cellular automata particularly suitable for simulating corrosion processes. Finally, cellular automata models offer a powerful and versatile approach to studying corrosion processes, expanding models that can continue to enhance our understanding of corrosion and contribute to the development of effective corrosion prevention and control strategies.

5.
Materials (Basel) ; 16(10)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37241440

RESUMO

The leaching of minerals is one of the main unit operations in the metal dissolution process, and in turn it is a process that generates fewer environmental liabilities compared to pyrometallurgical processes. As an alternative to conventional leaching methods, the use of microorganisms in mineral treatment processes has become widespread in recent decades, due to advantages such as the non-production of emissions or pollution, energy savings, low process costs, products compatible with the environment, and increases in the benefit of low-grade mining deposits. The purpose of this work is to introduce the theoretical foundations associated with modeling the process of bioleaching, mainly the modeling of mineral recovery rates. The different models are collected from models based on conventional leaching dynamics modeling, based on the shrinking core model, where the oxidation process is controlled by diffusion, chemically, or by film diffusion until bioleaching models based on statistical analysis are presented, such as the surface response methodology or the application of machine learning algorithms. Although bioleaching modeling (independent of modeling techniques) of industrial (or large-scale mined) minerals is a fairly developed area, bioleaching modeling applied to rare earth elements is a field with great growth potential in the coming years, as in general bioleaching has the potential to be a more sustainable and environmentally friendly mining method than traditional mining methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA