Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 122(21): 211101, 2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31283302

RESUMO

Gravitational-wave data analysis is rapidly absorbing techniques from deep learning, with a focus on convolutional networks and related methods that treat noisy time series as images. We pursue an alternative approach, in which waveforms are first represented as weighted sums over reduced bases (reduced-order modeling); we then train artificial neural networks to map gravitational-wave source parameters into basis coefficients. Statistical inference proceeds directly in coefficient space, where it is theoretically straightforward and computationally efficient. The neural networks also provide analytic waveform derivatives, which are useful for gradient-based sampling schemes. We demonstrate fast and accurate coefficient interpolation for the case of a four-dimensional binary-inspiral waveform family and discuss promising applications of our framework in parameter estimation.

2.
Phys Rev Lett ; 115(12): 121102, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26430979

RESUMO

Simulating a binary black hole coalescence by solving Einstein's equations is computationally expensive, requiring days to months of supercomputing time. Using reduced order modeling techniques, we construct an accurate surrogate model, which is evaluated in a millisecond to a second, for numerical relativity (NR) waveforms from nonspinning binary black hole coalescences with mass ratios in [1, 10] and durations corresponding to about 15 orbits before merger. We assess the model's uncertainty and show that our modeling strategy predicts NR waveforms not used for the surrogate's training with errors nearly as small as the numerical error of the NR code. Our model includes all spherical-harmonic _{-2}Y_{ℓm} waveform modes resolved by the NR code up to ℓ=8. We compare our surrogate model to effective one body waveforms from 50M_{⊙} to 300M_{⊙} for advanced LIGO detectors and find that the surrogate is always more faithful (by at least an order of magnitude in most cases).

3.
Phys Rev Lett ; 113(2): 021101, 2014 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-25062160

RESUMO

Many relevant applications in gravitational wave physics share a significant common problem: the seven-dimensional parameter space of gravitational waveforms from precessing compact binary inspirals and coalescences is large enough to prohibit covering the space of waveforms with sufficient density. We find that by using the reduced basis method together with a parametrization of waveforms based on their phase and precession, we can construct ultracompact yet high-accuracy representations of this large space. As a demonstration, we show that less than 100 judiciously chosen precessing inspiral waveforms are needed for 200 cycles, mass ratios from 1 to 10, and spin magnitudes ≤0.9. In fact, using only the first 10 reduced basis waveforms yields a maximum mismatch of 0.016 over the whole range of considered parameters. We test whether the parameters selected from the inspiral regime result in an accurate reduced basis when including merger and ringdown; we find that this is indeed the case in the context of a nonprecessing effective-one-body model. This evidence suggests that as few as ∼100 numerical simulations of binary black hole coalescences may accurately represent the seven-dimensional parameter space of precession waveforms for the considered ranges.

4.
Phys Rev Lett ; 110(17): 174301, 2013 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-23679733

RESUMO

Hamilton's principle of stationary action lies at the foundation of theoretical physics and is applied in many other disciplines from pure mathematics to economics. Despite its utility, Hamilton's principle has a subtle pitfall that often goes unnoticed in physics: it is formulated as a boundary value problem in time but is used to derive equations of motion that are solved with initial data. This subtlety can have undesirable effects. I present a formulation of Hamilton's principle that is compatible with initial value problems. Remarkably, this leads to a natural formulation for the Lagrangian and Hamiltonian dynamics of generic nonconservative systems, thereby filling a long-standing gap in classical mechanics. Thus, dissipative effects, for example, can be studied with new tools that may have applications in a variety of disciplines. The new formalism is demonstrated by two examples of nonconservative systems: an object moving in a fluid with viscous drag forces and a harmonic oscillator coupled to a dissipative environment.

5.
Phys Rev Lett ; 106(22): 221102, 2011 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-21702591

RESUMO

We introduce a reduced basis approach as a new paradigm for modeling, representing and searching for gravitational waves. We construct waveform catalogs for nonspinning compact binary coalescences, and we find that for accuracies of 99% and 99.999% the method generates a factor of about 10-10(5) fewer templates than standard placement methods. The continuum of gravitational waves can be represented by a finite and comparatively compact basis. The method is robust under variations in the noise of detectors, implying that only a single catalog needs to be generated.

6.
Phys Rev Lett ; 105(9): 094802, 2010 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-20868166

RESUMO

We introduce an effective field theory approach that describes the motion of finite size objects under the influence of electromagnetic fields. We prove that leading order effects due to the finite radius R of a spherically symmetric charge is order R2 rather than order R in any physical model, as widely claimed in the literature. This scaling arises as a consequence of Poincaré and gauge symmetries, which can be shown to exclude linear corrections. We use the formalism to calculate the leading order finite size correction to the Abraham-Lorentz-Dirac force.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...