Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Nano Mater ; 6(17): 15551-15562, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37706068

RESUMO

The unique self-assembly properties of unimer micelles are exploited for the preparation of fluorescent nanocarriers embedding hydrophobic fluorophores. Unimer micelles are constituted by a (meth)acrylate copolymer with oligoethyleneglycol and perflurohexylethyl side chains (PEGMA90-co-FA10) in which the hydrophilic and hydrophobic comonomers are statistically distributed along the polymeric backbone. Thanks to hydrophobic interactions in water, the amphiphilic copolymer forms small nanoparticles (<10 nm), with tunable properties and functionality. An easy procedure for the encapsulation of a small hydrophobic molecule (C153 fluorophore) within unimer micelles is presented. UV-vis, fluorescence, and fluorescence anisotropy spectroscopic experimental data demonstrate that the fluorophore is effectively embedded in the nanocarriers. Moreover, the nanocarrier positively contributes to preserve the good emissive properties of the fluorophore in water. The efficacy of the dye-loaded nanocarrier as a fluorescent probe is tested in two-photon imaging of thick ex vivo porcine scleral tissue.

2.
Pharmaceutics ; 15(6)2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37376151

RESUMO

Amphiphilic copolymer self-assembly is a straightforward approach to obtain responsive micelles, nanoparticles, and vesicles that are particularly attractive for biomedicine, i.e., for the delivery of functional molecules. Here, amphiphilic copolymers of hydrophobic polysiloxane methacrylate and hydrophilic oligo (ethylene glycol) methyl ether methacrylate with different lengths of oxyethylenic side chains were synthesized via controlled RAFT radical polymerization and characterized both thermally and in solution. In particular, the thermoresponsive and self-assembling behavior of the water-soluble copolymers in water was investigated via complementary techniques such as light transmittance, dynamic light scattering (DLS), and small-angle X-ray scattering (SAXS) measurements. All the copolymers synthesized were thermoresponsive, displaying a cloud point temperature (Tcp) strongly dependent on macromolecular parameters such as the length of the oligo(ethylene glycol) side chains and the content of the SiMA counits, as well as the concentration of the copolymer in water, which is consistent with a lower critical solution temperature (LCST)-type behavior. SAXS analysis revealed that the copolymers formed nanostructures in water below Tcp, whose dimension and shape depended on the content of the hydrophobic components in the copolymer. The hydrodynamic diameter (Dh) determined by DLS increased with the amount of SiMA and the associated morphology at higher SiMA contents was found to be pearl-necklace-micelle-like, composed of connected hydrophobic cores. These novel amphiphilic copolymers were able to modulate thermoresponsiveness in water in a wide range of temperatures, including the physiological temperature, as well as the dimension and shape of their nanostructured assemblies, simply by varying their chemical composition and the length of the hydrophilic side chains.

3.
ACS Appl Mater Interfaces ; 15(8): 11150-11162, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36802475

RESUMO

Two types of amphiphilic random terpolymers, poly(ethylene glycol methyl ether methacrylate)-ran-poly(2,2,6,6-tetramethylpiperidinyloxy methacrylate)-ran-poly(polydimethyl siloxane methacrylate) (PEGMEMA-r-PTMA-r-PDMSMA), were synthesized and evaluated for antifouling (AF) and fouling-release (FR) properties using diverse marine fouling organisms. In the first stage of production, the two respective precursor amine terpolymers containing (2,2,6,6-tetramethyl-4-piperidyl methacrylate) units (PEGMEMA-r-PTMPM-r-PDMSMA) were synthesized by atom transfer radical polymerization using various comonomer ratios and two initiators: alkyl halide and fluoroalkyl halide. In the second stage, these were selectively oxidized to introduce nitroxide radical functionalities. Finally, the terpolymers were incorporated into a PDMS host matrix to create coatings. AF and FR properties were examined using the alga Ulva linza, the barnacle Balanus improvisus, and the tubeworm Ficopomatus enigmaticus. The effects of comonomer ratios on surface properties and fouling assay results for each set of coatings are discussed in detail. There were marked differences in the effectiveness of these systems against the different fouling organisms. The terpolymers had distinct advantages over monopolymeric systems across the different organisms, and the nonfluorinated PEG and nitroxide combination was identified as the most effective formulation against B. improvisus and F. enigmaticus.

4.
Polymers (Basel) ; 14(4)2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35215686

RESUMO

Water-soluble amphiphilic random copolymers composed of tri(ethylene glycol) methacrylate (TEGMA) or poly(ethylene glycol) methyl ether methacrylate (PEGMA) and perfluorohexylethyl acrylate (FA) were synthesized by ARGET-ATRP, and their self-assembling and thermoresponsive behavior in water was studied by dynamic light scattering (DLS) and UV-vis spectroscopy. The copolymer ability to self-fold in single-chain nano-sized structures (unimer micelles) in aqueous solutions was exploited to encapsulate Combretastatin A-4 (CA-4), which is a very hydrophobic anticancer drug. The cloud point temperature (Tcp) was found to linearly decrease with increasing drug concentration in the drug/copolymer system. Moreover, while CA-4 was preferentially incorporated into the unimer micelles of TEGMA-ran-FA, the drug was found to induce multi-chain, submicro-sized aggregation of PEGMA-ran-FA. Anyway, the encapsulation efficiency was very high (≥81%) for both copolymers. The drug release was evaluated in PBS aqueous solutions both below and above Tcp for TEGMA-ran-FA copolymer and below Tcp, but at two different drug loadings, for PEGMA-ran-FA copolymer. In any case, the release kinetics presented similar profiles, characterized by linear trends up to ≈10-13 h and ≈7 h for TEGMA-ran-FA and PEGMA-ran-FA, respectively. Then, the release rate decreased, reaching a plateau. The release from TEGMA-ran-FA was moderately faster above Tcp than below Tcp, suggesting that copolymer thermoresponsiveness increased the release rate, which occurred anyway by diffusion below Tcp. Cytotoxicity tests were carried out on copolymer solutions in a wide concentration range (5-60 mg/mL) at 37 °C by using Balb/3T3 clone A31 cells. Interestingly, it was found that the concentration-dependent micro-sized aggregation of the amphiphilic random copolymers above Tcp caused a sort of "cellular asphyxiation" with a loss of cell viability clearly visible for TEGMA-ran-FA solutions (Tcp below 37 °C) with higher copolymer concentrations. On the other hand, cells in contact with the analogous PEGMA-ran-FA (Tcp above 37 °C) presented a very good viability (≥75%) with respect to the control at any given concentration.

5.
J Mater Chem B ; 8(42): 9764-9776, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33021610

RESUMO

Amphiphilic methacrylate copolymers (Si-co-EF) containing polysiloxane (Si) and mixed poly(oxyethylene)-perfluorohexyl (EF) side chains were synthesized with different compositions and used together with polysiloxane-functionalized nanoparticles as additives of condensation cured nanocomposite poly(siloxane) films. The mechanical properties of the nanocomposite films were consistent with the elastomeric behavior of the poly(siloxane) matrix without significant detriment from either the copolymer or the nanoparticles. Films were found to be markedly hydrophobic and liphophobic, with both properties being maximized at an intermediate content of EF units. The high enrichment in fluorine at the film surface was proven by angle-resolved X-ray photoelectron spectroscopy (AR-XPS). Long-term marine antifouling performance was evaluated in field immersion trials of test panels for up to 10 months of immersion. Both nanoparticles and amphiphilic copolymer were found to be highly effective in reducing the colonization of foulants, especially hard macrofoulants, when compared with control panels. Lowest percentage of surface coverage was 20% after 10 months of immersion (films with 4 wt% copolymer and 0.5 wt% nanoparticles), which was further decreased to less than 10% after exposure to a water jet for 10 s. The enhanced antifouling properties of coatings containing both nanoparticles and copolymer were confirmed by laboratory assays against the polychaete Ficopomatus enigmaticus and the diatom Navicula salinicola.


Assuntos
Incrustação Biológica/prevenção & controle , Dimetilpolisiloxanos/química , Nanocompostos/química , Tensoativos/química , Animais , Diatomáceas/química , Poliquetos/química , Polietilenoglicóis/química , Siloxanas/química , Propriedades de Superfície
6.
Polymers (Basel) ; 12(6)2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32485870

RESUMO

Diblock copolymers composed of a polystyrene first block and a PEG-fluoroalkyl chain-modified polystyrene second block were synthesized by controlled atom transfer radical polymerization (ATRP), starting from the same polystyrene macroinitiator. The wettability of the polymer film surfaces was investigated by measurements of static and dynamic contact angles. An increase in advancing water contact angle was evident for all the films after immersion in water for short times (10 and 1000 s), consistent with an unusual contraphilic switch of the PEG-fluoroalkyl side chains. Such a contraphilic response also accounted for the retained wettability of the polymer films upon prolonged contact with water, without an anticipated increase in the hydrophilic character. The copolymers were then used as surface-active modifiers of elastomer poly(styrene-b-(ethylene-co-butylene)-b-styrene) (SEBS)-based two-layer films. The elastomeric behavior of the films was varied by using SEBS matrices with different amounts of polystyrene. Whereas the mechanical properties strictly resembled those of the nature of the SEBS matrix, the surface properties were imposed by the additive. The contraphilic switch of the PEG-fluoroalkyl side chains resulted in an exceptionally high enrichment in fluorine of the film surface after immersion in water for seven days.

7.
Biofouling ; 36(4): 378-388, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32425065

RESUMO

Poly(dimethylsiloxane) (PDMS) elastomer coatings containing an amphiphilic hydrolyzable diblock copolymer additive were prepared and their potential as marine antifouling and antiadhesion materials was tested. The block copolymer additive consisted of a PDMS first block and a random poly(trialkylsilyl methacrylate (TRSiMA, R = butyl, isopropyl)-co-poly(ethyleneglycol) methacrylate (PEGMA) copolymer second block. PDMS-b-TRSiMA block copolymer additives without PEGMA units were also used as additives. The amphiphilic character of the coating surface was assessed in water using the captive air bubble technique for measurements of static and dynamic contact angles. The attachment of macro- and microorganisms on the coatings was evaluated by field tests and by performing adhesion tests to the barnacle Amphibalanus amphitrite and the green alga Ulva rigida. All the additive-based PDMS coatings showed better antiadhesion properties to A. amphitrite larvae than to U. rigida spores. Field tests provided meaningful information on the antifouling and fouling release activity of coatings over an immersion period of 23 months.


Assuntos
Incrustação Biológica , Polietilenoglicóis , Animais , Dimetilpolisiloxanos , Metacrilatos , Propriedades de Superfície
8.
Polymers (Basel) ; 12(2)2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-32050664

RESUMO

Fluorinated (F6) and zwitterionic, as well as phosphorylcholine (MPC) and sulfobetaine (MSA), copolymers containing a low amount (1 and 5 mol%) of 3-(trimethoxysilyl)propyl methacrylate (PTMSi) were prepared and covalently grafted to glass slides by using the trimethoxysilyl groups as anchorage points. Glass-surface functionalization and polymer-film stability upon immersion in water were proven by contact angle and angle-resolved X-ray photoelectron spectroscopy (AR-XPS) measurements. Antifouling performance of the grafted films was assayed against the yeast Candida albicans, the most common Candida species, which causes over 80% of candidiasis. Results revealed that the F6 fluorinated, hydrophobic copolymers performed much better in reducing the adhesion of C. albicans, with respect to both corresponding zwitterionic, hydrophilic MPC and MSA counterparts, and were similar to the glass negative control, which is well-known to inhibit the adhesion of C. albicans. A composition-dependent activity was also found, with the films of copolymer with 99 mol% F6 fluorinated co-units performing best.

9.
ACS Appl Mater Interfaces ; 9(19): 16505-16516, 2017 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-28429593

RESUMO

A set of controlled surface composition films was produced utilizing amphiphilic block copolymers dispersed in a cross-linked poly(dimethylsiloxane) network. These block copolymers contained oligo(ethylene glycol) (PEGMA) and fluoroalkyl (AF6) side chains in selected ratios and molecular weights to control surface chemistry including antifouling and fouling-release performance. Such properties were assessed by carrying out assays using two algae, the green macroalga Ulva linza (favors attachment to polar surfaces) and the unicellular diatom Navicula incerta (favors attachment to nonpolar surfaces). All films performed well against U. linza and exhibited high removal of attached sporelings (young plants) under an applied shear stress, with the lower molecular weight block copolymers being the best performing in the set. The composition ratios from 50:50 to 60:40 of the AF6/PEGMA side groups were shown to be more effective, with several films exhibiting spontaneous removal of the sporelings. The cells of N. incerta were also removed from several coating compositions. All films were characterized by surface techniques including captive bubble contact angle, atomic force microscopy, and near edge X-ray absorption fine structure spectroscopy to correlate surface chemistry and morphology with biological performance.

10.
Macromol Rapid Commun ; 38(8)2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28267231

RESUMO

A range of amphiphilic polymers with diverse macromolecular architectures has been developed and incorporated into films and coatings with potential for marine antibiofouling applications, without resorting to addition of currently used biocidal, toxic agents. Novel "green" chemical technologies employ different building blocks to endow the polymer film with surface activity, functionality, structure, and reconstruction according to the outer environment as a result of a tailored amphiphilic character of the polymer platform. We emphasise how these features can interplay and add synergistically to affect antifouling and fouling-release against common, widespread marine micro- and macro-fouling organisms.


Assuntos
Incrustação Biológica , Interações Hidrofóbicas e Hidrofílicas , Polímeros/química , Água do Mar/microbiologia , Membranas Artificiais , Microscopia de Força Atômica , Modelos Químicos , Estrutura Molecular , Polietilenoglicóis/química , Polímeros/síntese química , Propriedades de Superfície
11.
Biofouling ; 32(1): 81-93, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26769148

RESUMO

Block copolymers made from a poly(dimethyl siloxane) (Si) and a poly(meth)acrylate carrying oxyethylene (EG) or fluoroalkyl (AF) side chains were synthesized and incorporated as surface-active components into a silicone matrix to produce cross-linked films with different surface hydrophilicity/phobicity. Near-edge X-ray absorption fine structure (NEXAFS) studies showed that film surfaces containing Si-EG were largely populated by the siloxane, with the oxyethylene chains present only to a minor extent. In contrast, the fluorinated block was selectively segregated to the polymer-air interface in films containing Si-AF as probed by NEXAFS and X-ray photoelectron spectroscopy (XPS) analyses. Such differences in surface composition were reflected in the biological performance of the coatings. While the films with Si-EG showed a higher removal of both Ulva linza sporelings and Balanus amphitrite juveniles than the silicone control, those with Si-AF exhibited excellent antifouling properties, preventing the settlement of cyprids of B. amphitrite.


Assuntos
Incrustação Biológica/prevenção & controle , Thoracica , Ulva , Animais , Dimetilpolisiloxanos/farmacologia , Interações Hidrofóbicas e Hidrofílicas/efeitos dos fármacos , Espectroscopia Fotoeletrônica/métodos , Ácidos Polimetacrílicos/farmacologia , Silicones/farmacologia , Siloxanas/farmacologia , Propriedades de Superfície , Tensoativos/farmacologia , Thoracica/efeitos dos fármacos , Thoracica/fisiologia , Ulva/efeitos dos fármacos , Ulva/fisiologia
12.
ACS Appl Mater Interfaces ; 7(15): 8293-301, 2015 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-25835588

RESUMO

Novel photopolymerized network films based on a polysiloxane matrix containing varied amounts of polyoxyethylene (P3) or perfluorohexylethyl (F) dangling side chains were investigated. For films containing less than 10 wt % P3 and F, the wettability and elastic modulus were similar to those of the photopolymerized network matrix. However, angle-resolved X-ray photoelectron spectroscopy measurements proved that the surface of films with F dangling chains was highly enriched in fluorine depending on both the amount of P3 and F and their relative ratio in the films. The biological performance of the films was evaluated against a new widespread and invasive marine biofoulant, the serpulid Ficopomatus enigmaticus. The diatom Navicula salinicola was also assayed as a conventional model organism for comparison. Films richer in P3 better resisted the settlement and promoted the release of calcified tubeworms of F. enigmaticus.


Assuntos
Incrustação Biológica/prevenção & controle , Membranas Artificiais , Poliquetos/crescimento & desenvolvimento , Siloxanas/química , Siloxanas/efeitos da radiação , Animais , Interações Hidrofóbicas e Hidrofílicas , Luz , Teste de Materiais , Fotoquímica , Polímeros/síntese química , Polímeros/efeitos da radiação , Propriedades de Superfície
13.
ACS Macro Lett ; 3(1): 91-95, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35651116

RESUMO

We report the synthesis and structural characterization of a main-chain liquid crystal polymer constituted by a 1,2,4-oxadiazole-based bent-core repeat unit. For the first time, a liquid crystal polymer made of bent mesogenic units is demonstrated to exhibit cybotactic order in the nematic phase. Coupled with the chain-bond constraints, cybotaxis results in maximized molecular correlations that make this material of great potential in the search for the elusive biaxial and ferroelectric nematic phases. Indeed, repolarization current measurements in the nematic phase hint at a ferroelectric-like switching response (upon application of an electric field of only 1.0 V µm-1) that, albeit to be definitely confirmed by complementary techniques, is strongly supported by the comparative repolarization current measurements in the nematic and isotropic phases. Finally, the weak tendency of this polymer to crystallize makes it possible to supercool the cybotactic nematic phase down to room temperature, thus, paving the way for a glassy phase in which the biaxial (and possibly polar) order is frozen at room temperature.

14.
Ecotoxicol Environ Saf ; 98: 250-6, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24125869

RESUMO

Novel films were prepared by condensation curing reaction of a poly(dimethyl siloxane) (PDMS) matrix with bismuth neodecanoate and dibutyltin diacetate catalysts. An ecotoxicological study was performed on the leachates of the coatings using the bacterium Vibrio fischeri, the unicellular alga Dunaliella tertiolecta, the crustacean Artemia salina and the fish Sparus aurata (larvae) as testing organisms. A copper-based self-polishing commercial paint was also tested as reference. The results showed that the tin-catalysed coatings and the copper paint were highly toxic against at least two of the four test organisms, whereas bismuth-catalysed coatings did not show any toxic effect. Moreover, the same biological assessment was also carried out on PDMS coatings containing a surface-active fluorinated polymer. The toxicity of the entire polymeric system resulted only from the tin catalyst used for the condensation curing reaction, as the bismuth catalysed coatings incorporating the surface-active polymer remained atoxic toward all the tested organisms.


Assuntos
Bismuto/toxicidade , Dimetilpolisiloxanos/toxicidade , Compostos Organometálicos/toxicidade , Compostos Orgânicos de Estanho/toxicidade , Tensoativos/toxicidade , Poluentes Químicos da Água/toxicidade , Aliivibrio fischeri/química , Aliivibrio fischeri/efeitos dos fármacos , Animais , Incrustação Biológica/prevenção & controle , Bismuto/química , Catálise , Clorófitas/efeitos dos fármacos , Reagentes de Ligações Cruzadas/química , Crustáceos/efeitos dos fármacos , Dimetilpolisiloxanos/química , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Medições Luminescentes , Compostos Organometálicos/química , Compostos Orgânicos de Estanho/química , Pintura/toxicidade , Perciformes/crescimento & desenvolvimento , Tensoativos/química , Poluentes Químicos da Água/química
15.
Biofouling ; 28(6): 571-82, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22702904

RESUMO

Amphiphilic copolymers containing different amounts of poly(ethylene glycol)-fluoroalkyl acrylate and polysiloxane methacrylate units were blended with a poly(dimethyl siloxane) (PDMS) matrix in different proportions to investigate the effect of both copolymer composition and loading on the biological performance of the coatings. Laboratory bioassays revealed optimal compositions for the release of sporelings of Ulva linza, and the settlement of cypris larvae of Balanus amphitrite. The best-performing coatings were subjected to field immersion tests. Experimental coatings containing copolymer showed significantly reduced levels of hard fouling compared to the control coatings (PDMS without copolymer), their performance being equivalent to a coating based on Intersleek 700™. XPS analysis showed that only small amounts of fluorine at the coating surface were sufficient for good antifouling/fouling-release properties. AFM analyses of coatings under immersion showed that the presence of a regular surface structure with nanosized domains correlated with biological performance.


Assuntos
Acrilatos/farmacologia , Incrustação Biológica/prevenção & controle , Dimetilpolisiloxanos/farmacologia , Polímeros/química , Thoracica/efeitos dos fármacos , Ulva/efeitos dos fármacos , Acrilatos/química , Animais , Bioensaio , Dimetilpolisiloxanos/química , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Polímeros/farmacologia , Propriedades de Superfície , Thoracica/fisiologia , Ulva/fisiologia
16.
Biofouling ; 27(5): 529-41, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21614701

RESUMO

Amphiphilic diblock copolymers, Sz6 and Sz12, consisting of a poly(dimethylsiloxane) block (average degree of polymerisation = 132) and a PEGylated-fluoroalkyl modified polystyrene block (Sz, average degree of polymerisation = 6, 12) were prepared by atom transfer radical polymerization (ATRP). Coatings were obtained from blends of either block copolymer (1-10 wt%) with a poly(dimethylsiloxane) (PDMS) matrix. The coating surface presented a simultaneous hydrophobic and lipophobic character, owing to the strong surface segregation of the lowest surface energy fluoroalkyl chains of the block copolymer. Surface chemical composition and wettability of the films were affected by exposure to water. Block copolymer Sz6 was also blended with PDMS and a 0.1 wt% amount of multiwall carbon nanotubes (CNT). The excellent fouling-release (FR) properties of these new coatings against the macroalga Ulva linza essentially resulted from the inclusion of the amphiphilic block copolymer, while the addition of CNT did not appear to improve the FR properties.


Assuntos
Incrustação Biológica/prevenção & controle , Dimetilpolisiloxanos/química , Polietilenoglicóis/química , Poliestirenos/química , Água/química , Nanocompostos/química , Nanotubos de Carbono/química , Polimerização , Propriedades de Superfície , Ulva/metabolismo , Molhabilidade
17.
Langmuir ; 26(4): 2871-6, 2010 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-19894752

RESUMO

Two fluorinated/siloxane copolymers, O5/19 and D5/3, carrying 6 and 8 CF(2) groups in the fluoroalkyl tail, respectively, were used as the surface-active components of cured poly(dimethylsiloxane) (PDMS) blends at different loadings (0.3-5.0 wt % with respect to PDMS). The surface chemical composition was determined by angle-resolved X-ray photoelectron spectroscopy at the takeoff angles theta of 0 degrees, 60 degrees, and 75 degrees. It was found that the fluorinated copolymer was surface-segregated, and in-depth segregation (approximately 5 nm) depended upon the chemical structure of the copolymer. The surface fluorine atomic percentage of the blends with D5/3 was up to 3 orders of magnitude higher than the theoretical value expected for ideal homogeneous samples. Moreover, small amounts of the copolymer in the blends were sufficient to saturate the outermost surface in fluorine content. The chemical composition of the surface-segregated nanostructure of the films was also proven to be affected by external environment, namely, exposure to water.

18.
Langmuir ; 26(8): 5848-55, 2010 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-20000339

RESUMO

A copolyacrylate with semifluorinated and polydimethylsiloxane side chains (D5-3) was used as a surface modifier for a condensation-cured PDMS coating. The decyl fluorous group is represented by "D"; "5" is a 5 kDa silicone, and "3" is the mole ratio of fluorous to silicone side chains. Wetting behavior was assessed by dynamic contact angle (DCA) analysis using isopropanol, which differentiates silicone and fluorous wetting behavior. Interestingly, a maximum in surface oleophobicity was found at low D5-3 concentration (0.4 wt %). Higher concentrations result in decreased oleophobicity, as reflected in decreased contact angles. To understand this unexpected observation, dynamic light scattering (DLS) studies were initiated on a model system consisting of hydroxyl-terminated PDMS (18 kDa) containing varying amounts of D5-3. DLS revealed D5-3 aggregation to be a function of temperature and concentration. A model is proposed by which D5-3 surface concentration is depleted via phase separation favoring D5-3 aggregation at concentrations >0.4 wt %, that is, the cmc. This model suggests increasing aggregate/micelle concentrations at increased D5-3 concentration. Bulk morphologies studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM) support this model by showing increased aggregate concentrations with increased D5-3 > 0.4 wt %.


Assuntos
Dimetilpolisiloxanos/química , Polímeros de Fluorcarboneto/química , Polímeros/química , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Estrutura Molecular , Propriedades de Superfície , Temperatura
19.
Biofouling ; 25(6): 481-93, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19373571

RESUMO

Fouling-release coatings were prepared from blends of a fluorinated/siloxane copolymer with a poly(dimethyl siloxane) (PDMS) matrix in order to couple the low modulus character of PDMS with the low surface tension typical for fluorinated polymers. The content of the surface-active copolymer was varied in the blend over a broad range (0.15-10 wt % with respect to PDMS). X-ray photoelectron spectroscopy depth profiling analyses were performed on the coatings to establish the distribution of specific chemical constituents throughout the coatings, and proved enrichment in fluorine of the outermost layers of the coating surface. Addition of the fluorinated/siloxane copolymer to the PDMS matrix resulted in a concentration-dependent decrease in settlement of barnacle, Balanus amphitrite, cyprids. The release of young plants of Ulva, a soft fouling species, and young barnacles showed that adhesion strength on the fluorinated/siloxane copolymer was significantly lower than the siloxane control. However, differences in adhesion strength were not directly correlated with the concentration of copolymer in the blends.


Assuntos
Flúor , Polímeros , Siloxanas , Thoracica/efeitos dos fármacos , Ulva/efeitos dos fármacos , Adesividade , Animais , Dimetilpolisiloxanos/síntese química , Dimetilpolisiloxanos/química , Dimetilpolisiloxanos/farmacologia , Flúor/química , Flúor/farmacologia , Polímeros/síntese química , Polímeros/química , Polímeros/farmacologia , Siloxanas/química , Siloxanas/farmacologia , Propriedades de Superfície , Thoracica/fisiologia , Ulva/fisiologia
20.
Langmuir ; 24(22): 13138-47, 2008 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-18928304

RESUMO

New amphiphilic block copolymers S nSz m consisting of blocks with varied degrees of polymerization, n and m, of polystyrene, S, and polystyrene carrying an amphiphilic polyoxyethylene-polytetrafluoroethylene chain side-group, Sz, were prepared by controlled atom transfer radical polymerization (ATRP). The block copolymers, either alone or in a blend with commercial SEBS (10 wt% SEBS), were spin-coated in thinner films (200-400 nm) on glass and spray-coated in thicker films ( approximately 500 nm) on a SEBS underlayer (150-200 microm). Angle-resolved X-ray photoelectron spectroscopy (XPS) measurements proved that at any photoemission angle, varphi, the atomic ratio F/C was larger than that expected from the known stoichiometry. Consistent with the enrichment of the outer film surface (3-10 nm) in F content, the measured contact angles, theta, with water (theta w > or = 107 degrees ) and n-hexadecane (theta h > or = 64 degrees ) pointed to the simultaneous hydrophobic and lipophobic character of the films. The film surface tension gamma S calculated from the theta values was in the range 13-15 mN/m. However, the XPS measurements on the "wet" films after immersion in water demonstrated that the film surface underwent reconstruction owing to its amphiphilic nature, thereby giving rise to a more chemically heterogeneous structure. The atomic force microscopy (AFM) images (tapping mode/AC mode) revealed well-defined morphological features of the nanostructured films. Depending on the chemical composition of the block copolymers, spherical (ca. 20 nm diameter) and lying cylindrical (24-29 nm periodicity) nanodomains of the S discrete phase were segregated from the Sz continuous matrix (root-mean-square, rms, roughness approximately 1 nm). After immersion in water, the underwater AFM patterns evidenced a transformation to a mixed surface structure, in which the nanoscale heterogeneity and topography (rms = 1-6 nm) were increased. The coatings were subjected to laboratory bioassays to explore their intrinsic ability to resist the settlement and reduce the adhesion strength of two marine algae, viz., the macroalga (seaweed) Ulva linza and the unicellular diatom Navicula perminuta. The amphiphilic nature of the copolymer coatings resulted in distinctly different performances against these two organisms. Ulva adhered less strongly to the coatings richer in the amphiphilic polystyrene component, percentage removal being maximal at intermediate weight contents. In contrast, Navicula cells adhered less strongly to coatings with a lower weight percentage of the amphiphilic side chains. The results are discussed in terms of the changes in surface structure caused by immersion and the effects such changes may have on the adhesion of the test organisms.


Assuntos
Nanoestruturas/química , Polímeros/química , Animais , Bromo/química , Diatomáceas , Eucariotos/metabolismo , Espectroscopia de Ressonância Magnética , Microscopia de Força Atômica , Polietilenoglicóis/química , Poliestirenos/química , Politetrafluoretileno/química , Alga Marinha , Silicones/química , Espectrometria por Raios X/métodos , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...