Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 337: 122414, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37598931

RESUMO

Freshwater ecosystems are essential to human and wildlife survival. They harbor a wide biodiversity that contributes to ecosystem services. In the ecosystem of the Brazilian Savanna, anthropic activities related to environmental pollution that includes mercury (Hg) is of concern. We studied total mercury concentrations ([THg]) in bottom sediments and macrophytes to assess its short-term (2012 and 2019) impact on a natural lake. Temporal changes in [Hg] were assessed with the geoaccumulation index (Igeo) and the sediment quality guidelines (SQG). The land use index (LUI) was used to assess differences in anthropogenic activities and the Normalized Difference Aquatic Vegetation Index (NDAVI) was used to assess macrophyte biomass density. The bioaccumulation factor (BAF) was used to assess Hg accumulation in macrophytes relative to sediments. The LUI showed an increase in the intensity of agricultural activities in the vicinities of the lake. The NDAVI indicated an increase in the density of macrophytes in the evaluated period. The Igeo indicated that in all sampling sites, pollution levels in sediments increased in 2019 (Igeo > 0), with concentrations exceeding the SQG in 2019. In 2012, [THg] in sediments ranged from 20.7 to 74.6 ng g-1, and in 2019 they ranged from 129.1 to 318.2 ng g-1. In macrophytes, [THg] ranged from 14.0 to 42.1 ng g-1 in 2012, to 53.0 and 175.3 ng g-1 in 2019. [THg] in bottom sediments and macrophytes were significantly higher in the second collection period (p < 0.05). There was no significant difference in BAF values between the periods and no significant bioaccumulation in macrophytes (BAF <1). Our results demonstrated that the macrophytes are not sensitive indicators of Hg pollution in lentic environments of the Brazilian Savanna; however, the increased land use intensity (agriculture, automotive traffic, and urban infrastructure) could increase Hg accumulation in sediments and macrophytes in a short time interval.


Assuntos
Mercúrio , Poluentes Químicos da Água , Humanos , Mercúrio/análise , Lagos/química , Ecossistema , Brasil , Pradaria , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Sedimentos Geológicos/química
2.
PLoS One ; 16(10): e0258342, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34648532

RESUMO

Different biological groups can be used for monitoring aquatic ecosystems because they can respond to variations in the environment. However, the evaluation of different bioindicators may demand multiple financial resources and time, especially when abundance quantification and species-level identification are required. In this study, we evaluated whether taxonomic, numerical resolution and cross-taxa can be used to optimize costs and time for stream biomonitoring in Central Brazil (Cerrado biome). For this, we sampled different biological groups (fish, zooplankton, phytoplankton, and periphyton) in stream stretches distributed in a gradient of land conversion dominated by agriculture and livestock. We used the Mantel and Procrustes analyses to test the association among different taxonomic levels (species to class), the association between incidence and abundance data (numerical resolution), and biological groups. We also assessed the relative effect of local environmental and spatial predictors on different groups. The taxonomic levels and numerical resolutions were strongly correlated in all taxonomic groups (r > 0.70). We found no correlations among biological groups. Different sets of environmental variables were the most important to explain the variability in species composition of distinct biological groups. Thus, we conclude that monitoring the streams in this region using bioindicators is more informative through higher taxonomic levels with occurrence data than abundance. However, different biological groups provide complementary information, reinforcing the need for a multi-taxa approach in biomonitoring.


Assuntos
Monitoramento Biológico , Ecossistema , Peixes/fisiologia , Perifíton/fisiologia , Filogenia , Fitoplâncton/fisiologia , Zooplâncton/fisiologia , Animais , Biodiversidade , Brasil , Geografia , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA