Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Synth Biol ; 13(9): 3046-3050, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39230510

RESUMO

Mathematical modeling is indispensable in synthetic biology but remains underutilized. Tackling problems, from optimizing gene networks to simulating intracellular dynamics, can be facilitated by the ever-growing body of modeling approaches, be they mechanistic, stochastic, data-driven, or AI-enabled. Thanks to progress in the AI community, robust frameworks have emerged to enable researchers to access complex computational hardware and compilation. Previously, these frameworks focused solely on deep learning, but they have been developed to the point where running different forms of computation is relatively simple, as made possible, notably, by the JAX library. Running simulations at scale on GPUs speeds up research, which compounds enable larger-scale experiments and greater usability of code. As JAX remains underexplored in computational biology, we demonstrate its utility in three example projects ranging from synthetic biology to directed evolution, each with an accompanying demonstrative Jupyter notebook. We hope that these tutorials serve to democratize the flexible scaling, faster run-times, easy GPU portability, and mathematical enhancements (such as automatic differentiation) that JAX brings, all with only minor restructuring of code.


Assuntos
Software , Biologia Sintética , Biologia Sintética/métodos , Biologia Computacional/métodos , Simulação por Computador
2.
Eng Biol ; 5(3): 51-59, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36968258

RESUMO

After 2 decades of growth and success, synthetic biology has now become a mature field that is driving significant innovation in the bioeconomy and pushing the boundaries of the biomedical sciences and biotechnology. So what comes next? In this article, 10 technological advances are discussed that are expected and hoped to come from the next generation of research and investment in synthetic biology; from ambitious projects to make synthetic life, cell simulators and custom genomes, through to new methods of engineering biology that use automation, deep learning and control of evolution. The non-exhaustive list is meant to inspire those joining the field and looks forward to how synthetic biology may evolve over the coming decades.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA