Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 359: 142314, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38735489

RESUMO

Continuously growing adoption of electronic devices in energy storage, human health and environmental monitoring systems increases demand for cost-effective, lightweight, comfortable, and highly efficient functional structures. In this regard, the recycling and reuse of polyethylene terephthalate (PET) waste in the aforementioned fields due to its excellent mechanical properties and chemical resistance is an effective solution to reduce plastic waste. Herein, we review recent advances in synthesis procedures and research studies on the integration of PET into energy storage (Li-ion batteries) and the detection of gaseous and biological species. The operating principles of such systems are described and the role of recycled PET for various types of architectures is discussed. Modifying the composition, crystallinity, surface porosity, and polar surface functional groups of PET are important factors for tuning its features as the active or substrate material in biological and gas sensors. The findings indicate that conceptually new pathways to the study are opened up for the effective application of recycled PET in the design of Li-ion batteries, as well as biochemical and catalytic detection systems. The current challenges in these fields are also presented with perspectives on the opportunities that may enable a circular economy in PET use.


Assuntos
Técnicas Biossensoriais , Fontes de Energia Elétrica , Gases , Polietilenotereftalatos , Reciclagem , Polietilenotereftalatos/química , Técnicas Biossensoriais/métodos , Gases/análise , Monitoramento Ambiental/métodos
2.
Bioengineering (Basel) ; 11(2)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38391652

RESUMO

The golden rule in tissue engineering is the creation of a synthetic device that simulates the native tissue, thus leading to the proper restoration of its anatomical and functional integrity, avoiding the limitations related to approaches based on autografts and allografts. The emergence of synthetic biocompatible materials has led to the production of innovative scaffolds that, if combined with cells and/or bioactive molecules, can improve tissue regeneration. In the last decade, silk fibroin (SF) has gained attention as a promising biomaterial in regenerative medicine due to its enhanced bio/cytocompatibility, chemical stability, and mechanical properties. Moreover, the possibility to produce advanced medical tools such as films, fibers, hydrogels, 3D porous scaffolds, non-woven scaffolds, particles or composite materials from a raw aqueous solution emphasizes the versatility of SF. Such devices are capable of meeting the most diverse tissue needs; hence, they represent an innovative clinical solution for the treatment of bone/cartilage, the cardiovascular system, neural, skin, and pancreatic tissue regeneration, as well as for many other biomedical applications. The present narrative review encompasses topics such as (i) the most interesting features of SF-based biomaterials, bare SF's biological nature and structural features, and comprehending the related chemo-physical properties and techniques used to produce the desired formulations of SF; (ii) the different applications of SF-based biomaterials and their related composite structures, discussing their biocompatibility and effectiveness in the medical field. Particularly, applications in regenerative medicine are also analyzed herein to highlight the different therapeutic strategies applied to various body sectors.

3.
Sensors (Basel) ; 23(19)2023 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-37837151

RESUMO

Titanium dioxide nanobelts were prepared via the alkali-hydrothermal method for application in chemical gas sensing. The formation process of TiO2-(B) nanobelts and their sensing properties were investigated in detail. FE-SEM was used to study the surface of the obtained structures. The TEM and XRD analyses show that the prepared TiO2 nanobelts are in the monoclinic phase. Furthermore, TEM shows the formation of porous-like morphology due to crystal defects in the TiO2-(B) nanobelts. The gas-sensing performance of the structure toward various concentrations of hydrogen, ethanol, acetone, nitrogen dioxide, and methane gases was studied at a temperature range between 100 and 500 °C. The fabricated sensor shows a high response toward acetone at a relatively low working temperature (150 °C), which is important for the development of low-power-consumption functional devices. Moreover, the obtained results indicate that monoclinic TiO2-B is a promising material for applications in chemo-resistive gas detectors.

4.
ACS Appl Mater Interfaces ; 13(27): 32363-32380, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34223766

RESUMO

TiO2/Cu2O/CuO multi-nanolayers highly sensitive toward volatile organic compounds (VOCs) and H2 have been grown in various thicknesses by a cost-effective and reproducible combined spray-sputtering-annealing approach. The ultrathin TiO2 films were deposited by spray pyrolysis on top of sputtered-annealed Cu2O/CuO nanolayers to enhance their gas sensing performance and improve their protection against corrosion at high operating temperatures. The prepared heterostructures were investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), and ultraviolet visible (UV-vis) and micro-Raman spectroscopy. The gas sensing properties were measured at several operating temperatures, where the nanolayered sensors with oxide thicknesses between 20 and 30 nm (Cu2O/CuO nanolayers) exhibited a high response and an excellent selectivity to ethanol vapor after thermal annealing the samples at 420 °C. The results obtained at an operating temperature of 350 °C demonstrate that the CuO/Cu2O nanolayers with thicknesses between 20 and 30 nm are sensitive mainly to ethanol vapor, with a response of ∼150. The response changes from ethanol vapors to hydrogen gas as the thickness of the CuO/Cu2O nanolayers changes from 50 to 20 nm. Density functional theory-based calculations were carried out for the geometries of the CuO(1̅11)/Cu2O(111) and TiO2(111)/CuO(1̅11)/Cu2O(111) heterostructures and their sensing mechanism toward alcohols of different chain lengths and molecular hydrogen. The reconstructed hexagonal Cu2O(111) surface and the reconstructed monoclinic CuO(1̅11) and TiO2(111) facets, all of which terminate in an O layer, lead to the lowest surface energies for each isolated material. We studied the formation of the binary and ternary heteroepitaxial interfaces for the surface planes with the best-matching lattices. Despite the impact of the Cu2O(111) substrate in lowering the atomic charges of the CuO(1̅11) adlayer in the binary sensor, we found that it is the different surface structures of the CuO(1̅11)/Cu2O(111) and TiO2(111)/CuO(1̅11)/Cu2O(111) devices that are fundamental in driving the change in the sensitivity response observed experimentally. The experimental data, supported by the computational results, are important in understanding the use of the multi-nanolayered films tested in this work as reliable, accurate, and selective sensor structures for the tracking of gases at low concentrations.

5.
Anal Chim Acta ; 1152: 238192, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33648653

RESUMO

Advances in gas sensing devices are urgently needed to reduce air pollution and control human health. In this regard, the progress in the development of low-dimensional semiconductor structures may revolutionize the concept of conventional gas sensors. The confinement of charge carriers in one or more spatial dimensions leads to the unique electrical and optical properties of semiconductor materials. Quantum dots, where the electron-hole pairs are confined in all three dimensions, offer new insights into the properties of materials. The research on quantum dot chemical sensors has become one of the rapidly developing fields in contemporary sensing technologies. The structures comprising quantum dots have shown promising sensing performance indicating that they are emerging as a new class of materials for application in chemiresistive devices. However, the QD-based structures are only beginning to be integrated into the monitoring systems. The experimental findings suggest that intensive studies need to be performed for deeply understanding the influence of synthesis procedures and additive materials on the sensing performance of quantum dots. Moreover, the response and selectivity of the materials should be analyzed considering the band gap changes in quantum dots as the size is varied. This paper provides an overview of the progress in the research of semiconductor quantum dots for application in chemical gas sensors. Advances in the fabrication and functionalities of metal oxide, chalcogenide and carbon quantum dots are highlighted. The effect of precursor materials and preparation methods on the structural features, chemical nature, size reduction and electronic properties of quantum dots are considered to examine their sensing performance. Afterward, a brief summary and outlook for the field are provided, along with the achievements and issues that are important for future studies.

6.
Sensors (Basel) ; 20(3)2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31973066

RESUMO

In this paper, we present the investigations on metal oxide-based gas sensors considering the works performed at SENSOR lab, University of Brescia (Italy). We reported the developments in synthesis techniques for the preparation of doped and functionalized low-dimensional metal oxide materials. Furthermore, we discussed our achievements in the fabrication of heterostructures with unique functional features. In particular, we focused on the strategies to improve the sensing performance of metal oxides at relatively low operating temperatures. We presented our studies on surface photoactivation of sensing structures considering the application of biocompatible materials in the architecture of the functional devices as well.


Assuntos
Materiais Biocompatíveis/química , Técnicas Biossensoriais/métodos , Catálise , Gases/análise , Microscopia Eletrônica de Varredura , Temperatura
7.
Nanotechnology ; 31(10): 105502, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31751951

RESUMO

SnO2 is one of the most studied oxide materials for gas sensing applications. Investigations have shown that SnO2 is sensitive to a wide range of gaseous compounds. However, its lack of selectivity remains an issue. Here, a mesoporous polycrystalline SnO2 framework was successfully synthesized using a soft templating method at ambient temperature and pressure. The prepared materials were characterized using x-ray diffraction analysis, high-resolution transmission electron microscopy, energy-dispersive x-ray spectroscopy, N2 sorption tests, and x-ray photoelectron spectroscopy. Gas sensing analyses were performed on two batches of the material calcined at 400 °C and 500 °C. The resultant materials were highly conductive at relatively low operating temperatures. The thermal annealing and operating temperatures of the materials had significant effects on their gas sensing response and selectivity. The structure calcined at 400 °C showed a very selective response of 407 to 1 ppm NO2. The superior sensing performance of the obtained mesoporous SnO2 framework is attributed to its small crystal size of 4-5 nm-less than double the thickness of the critical electron depletion layer-as well as its high surface area of 89 m2 g-1 and high pore volume of 0.12 cm3 g-1.

8.
ACS Sens ; 4(8): 2094-2100, 2019 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-31304746

RESUMO

The precise detection of flammable and explosive gases and vapors remains an important issue because of the increasing demand for renewable energy sources and safety requirements in industrial processes. Metal oxides (TiO2, SnO2, ZnO, etc.) are very attractive materials for the manufacturing of chemical gas sensors. However, their gas selectivity issues and further improvement in the sensing response remain a significant challenge. The incorporation of metal oxides with two-dimensional (2D) graphene oxide (GO) is considered to be a promising approach to obtaining hybrid structures with improved gas-sensing performance. Herein, we report the development of GO and niobium-doped titanium dioxide nanotube (NT) hybrid structures with a tunable selectivity and sensing response against hydrogen gas, achieved by properly controlling the degree of reduction and concentration of GO. The effects of these parameters are systematically studied in terms of the response amplitude and selectivity. It was found that, compared to undoped titanium dioxide nanotubes, the hybrid material with an optimal concentration of reduced-GO and the introduction of niobium shows an increase in hydrogen response of about an order of magnitude and a simultaneous reduction of the response to possible interfering compounds such as carbon monoxide and acetone, thus providing enhanced selectivity. This research may provide an efficient way to enhance the chemical sensing performance of metal oxide nanomaterials.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Grafite/química , Hidrogênio/análise , Nanotubos/química , Nióbio/química , Titânio/química , Estrutura Molecular , Oxirredução
9.
Anal Chim Acta ; 1039: 1-23, 2018 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-30322540

RESUMO

This review focuses on the synthesis and chemical sensing characterization of metal oxide heterostructures reported since 2012. Heterostructures exhibit strong interactions between closely packed interfaces, showing superior performances compared to single structures. Surface effects appear thanks to the magnification of nanostructures' surface leading to an enhancement of surface related properties (the base of chemical sensors working mechanism). The combination of different metal oxides to form heterostructures further improves the selectivity and/or other important sensing parameters. A very large number of different morphologies and structures have been proposed, each one exhibiting peculiar sensing properties towards specific chemical compounds. Among the different preparation methodologies, a significant number has been performed by means of hydrothermal method. However, the combination of various fabrication methods seems a very efficient strategy to obtain metal oxide-based heterostructures with different morphologies and dimensions such as core-shell nanostructures, one-dimensional heterostructures, two-dimensional layered heterojunctions, and three-dimensional hierarchical heterostructures. Despite all extraordinary advances in both material science and nanotechnology and the results achieved with heterostructured chemical sensors, there are few points that still deserve further studies and investigations, such as possible diffusion across the junctions, reproducibility of the fabrication process, synergistic or catalytic effects among the materials forming the heterostructures and influence/stability of the contacts. Moreover, perfect control over their growth is mandatory for their application in commercial devices. Only a careful understanding of the growth and the interface properties could fill the existing gap between laboratory studies and real-world exploitation of these heterostructures.

10.
ACS Appl Mater Interfaces ; 10(12): 10173-10184, 2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29504743

RESUMO

Tin dioxide (SnO2) nanoparticles were straightforwardly synthesized using an easily scaled-up liquid route that involves the hydrothermal treatment, either under acidic or basic conditions, of a commercial tin dioxide particle suspension including potassium counterions. After further thermal post-treatment, the nanomaterials have been thoroughly characterized by Fourier transform infrared and Raman spectroscopy, powder X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and nitrogen sorption porosimetry. Varying pH conditions and temperature of the thermal treatment provided cassiterite SnO2 nanoparticles with crystallite sizes ranging from 7.3 to 9.7 nm and Brunauer-Emmett-Teller surface areas ranging from 61 to 106 m2·g-1, acidic conditions favoring potassium cation removal. Upon exposure to a reducing gas (H2, CO, and volatile organic compounds such as ethanol and acetone) or oxidizing gas (NO2), layers of these SnO2 nanoparticles led to highly sensitive, reversible, and reproducible responses. The sensing results were discussed in regard to the crystallite size, specific area, valence band energy, Debye length, and chemical composition. Results highlight the impact of the counterion residuals, which affect the gas-sensing performance to an extent much higher than that of size and surface area effects. Tin dioxide nanoparticles prepared under acidic conditions and calcined in air showed the best sensing performances because of lower amount of potassium cations and higher crystallinity, despite the lower surface area.

11.
Nanomaterials (Basel) ; 7(12)2017 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-29258284

RESUMO

This paper presents the results of studies of the local surface properties of pure and highly Nb-doped (12 wt %) TiO2 nanotubes (TNT) using the X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) methods, respectively. XPS analysis showed that the pure TNT exhibit an evident over-stoichiometry combined with high level of undesired C contaminations, which was confirmed by the relative concentration of specific elements O, Ti and C (with respect to all the surface atoms) equal to 0.46, 018 and 0.36, respectively. In turn, for the highly Nb-doped (12 wt %) TNT, a slightly different surface chemistry was observed because the relative concentration of specific elements O and Ti and, with respect to all the surface atoms, is slightly lower, that is, 0.42 and 0.12, respectively; this is directly related to the fact that Nb atoms appeared having the relative concentration at the level of 0.09, whereas the undesired C contaminations reached the same level (0.36), as is the case of pure TNT. In addition, SEM analysis confirms that there are evident free spaces between the specific slops containing several TNT, what was additionally confirmed by the contribution of specific surface bonding coming from the SiO2/Si substrate. The obtained information allowed us a new insight on the potential origin of aging effect at the surface of TNT in atmosphere being the undesired limitation for their potential application as the chemical resistive type sensors or in any other fields of their application related to their surface activity.

12.
Sensors (Basel) ; 17(12)2017 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-29257076

RESUMO

Gas sensors play an important role in our life, providing control and security of technical processes, environment, transportation and healthcare. Consequently, the development of high performance gas sensor devices is the subject of intense research. TiO2, with its excellent physical and chemical properties, is a very attractive material for the fabrication of chemical sensors. Meanwhile, the emerging technologies are focused on the fabrication of more flexible and smart systems for precise monitoring and diagnosis in real-time. The proposed cyber chemical systems in this paper are based on the integration of cyber elements with the chemical sensor devices. These systems may have a crucial effect on the environmental and industrial safety, control of carriage of dangerous goods and medicine. This review highlights the recent developments on fabrication of porous TiO2-based chemical gas sensors for their application in cyber chemical system showing the convenience and feasibility of such a model to provide the security and to perform the diagnostics. The most of reports have demonstrated that the fabrication of doped, mixed and composite structures based on porous TiO2 may drastically improve its sensing performance. In addition, each component has its unique effect on the sensing properties of material.


Assuntos
Titânio/química , Humanos , Porosidade
13.
Sensors (Basel) ; 17(4)2017 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-28353673

RESUMO

This work reports the recent results achieved at the SENSOR Lab, Brescia (Italy) to address the selectivity of metal oxide based gas sensors. In particular, two main strategies are being developed for this purpose: (i) investigating different sensing mechanisms featuring different response spectra that may be potentially integrated in a single device; (ii) exploiting the electronic nose (EN) approach. The former has been addressed only recently and activities are mainly focused on determining the most suitable configuration and measurements to exploit the novel mechanism. Devices suitable to exploit optical (photoluminescence), magnetic (magneto-optical Kerr effect) and surface ionization in addition to the traditional chemiresistor device are here discussed together with the sensing performance measured so far. The electronic nose is a much more consolidated technology, and results are shown concerning its suitability to respond to industrial and societal needs in the fields of food quality control and detection of microbial activity in human sweat.

14.
Beilstein J Nanotechnol ; 7: 1421-1427, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27826516

RESUMO

A hybrid nanostructure based on reduced graphene oxide and ZnO has been obtained for the detection of volatile organic compounds. The sensing properties of the hybrid structure have been studied for different concentrations of ethanol and acetone. The response of the hybrid material is significantly higher compared to pristine ZnO nanostructures. The obtained results have shown that the nanohybrid is a promising structure for the monitoring of environmental pollutants and for the application of breath tests in assessment of exposure to volatile organic compounds.

15.
Nanotechnology ; 25(36): 365701, 2014 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-25141030

RESUMO

Metallic implants and devices are widely used in the orthopedic and orthodontic clinical areas. However, several problems regarding their adhesion with the living tissues and inflammatory responses due to the release of metallic ions to the medium have been reported. The modification of the metallic surfaces and the use of biocompatible protective coatings are two approaches to solve such issues. In this study, in order to improve the adhesion properties and to increase the corrosion resistance of metallic Ti substrates we have obtained a hybrid structure based on TiO2 nanotubular arrays and PDMS-TEOS films. TiO2 nanotubes have been prepared with two different diameters by means of electrochemical anodization. PDMS-TEOS films have been prepared by the sol-gel method. The morphological and the elemental analysis of the structures have been investigated by scanning electron microscopy and energy dispersive spectroscopy (EDS). Electrochemical impedance spectroscopy (EIS) and polarization curves have been performed during immersion of the samples in Kokubo's simulated body fluid (SBF) at 37 °C to study the effect of structure layers and tube diameter on the protective properties. The obtained results show that the modification of the surface structure of TiO2 and the application of PDMS-TEOS film is a promising strategy for the development of implant materials.


Assuntos
Materiais Revestidos Biocompatíveis/síntese química , Dimetilpolisiloxanos/química , Nanotubos/química , Nylons/química , Silanos/química , Titânio/química , Eletroquímica , Humanos , Teste de Materiais , Nanotubos/ultraestrutura
16.
Sensors (Basel) ; 13(11): 14813-38, 2013 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-24184919

RESUMO

Synthesis--particularly by electrochemical anodization-, growth mechanism and chemical sensing properties of pure, doped and mixed titania tubular arrays are reviewed. The first part deals on how anodization parameters affect the size, shape and morphology of titania nanotubes. In the second part fabrication of sensing devices based on titania nanotubes is presented, together with their most notable gas sensing performances. Doping largely improves conductivity and enhances gas sensing performances of TiO2 nanotubes.


Assuntos
Técnicas Eletroquímicas , Gases/análise , Nanotubos , Titânio
17.
Nanotechnology ; 23(23): 235706, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22595952

RESUMO

Synthesis of Nb-containing titania nanotubular arrays at room temperature by electrochemical anodization is reported. Crystallization of pure and Nb-doped TiO(2) nanotubes was carried out by post-growth annealing at 400°C. The morphology of the tubes obtained was characterized by scanning electron microscopy (SEM). Crystal structure and composition of tubes were investigated by glancing incidence x-ray diffraction (GIXRD) and total reflection x-ray fluorescence (TXRF). For the first time gas sensing characteristics of Nb-doped TiO(2) nanotubes were investigated and compared to those of undoped nanotubes. The functional properties of nanotubular arrays towards CO, H(2), NO(2), ethanol and acetone were tested in a wide range of operating temperature. The introduction of Nb largely improves conductivity and enhances gas sensing performances of TiO(2) nanotubes.


Assuntos
Gases/análise , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nióbio/química , Titânio/química , Transdutores , Desenho de Equipamento , Análise de Falha de Equipamento , Tamanho da Partícula
18.
Small ; 7(17): 2437-42, 2011 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-21793205

RESUMO

Electrochemical anodization of a titanium film on a Kapton HN substrate leads to the formation of closely packed aligned nanotubes, whose shape can be finely tuned by tailoring the anodization parameters. An amorphous-to-anatase phase transition is induced on nanotubes by annealing at 350 °C. The nanotubes are applied as photoanodes in flexible dye-sensitized solar cells (N719 dye; I3-/I- redox couple), resulting in a photoconversion efficiency of up to 3.5% under simulated sunlight irradiation air mass 1.5 global (AM 1.5G).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...