Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Pharmacol ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38631821

RESUMO

BACKGROUND AND PURPOSE: Transient hypofunction of the NMDA receptor represents a convergence point for the onset and further development of psychiatric disorders, including schizophrenia. Although the cumulative evidence indicates dysregulation of the hippocampal formation in schizophrenia, the integrity of the synaptic transmission and plasticity conveyed by the somatosensorial inputs to the dentate gyrus, the perforant pathway synapses, have barely been explored in this pathological condition. EXPERIMENTAL APPROACH: We identified a series of synaptic alterations of the lateral and medial perforant paths in animals postnatally treated with the NMDA antagonist MK-801. This dysregulation suggests decreased cognitive performance, for which the dentate gyrus is critical. KEY RESULTS: We identified alterations in the synaptic properties of the lateral and medial perforant paths to the dentate gyrus synapses in slices from MK-801-treated animals. Altered glutamate release and decreased synaptic strength precede an impairment in the induction and expression of long-term potentiation (LTP) and CB1 receptor-mediated long-term depression (LTD). Remarkably, by inhibiting the degradation of 2-arachidonoylglycerol (2-AG), an endogenous ligand of the CB1 receptor, we restored the LTD in animals treated with MK-801. Additionally, we showed for the first time, that spatial discrimination, a cognitive task that requires dentate gyrus integrity, is impaired in animals exposed to transient hypofunction of NMDA receptors. CONCLUSION AND IMPLICATIONS: Dysregulation of glutamatergic transmission and synaptic plasticity from the entorhinal cortex to the dentate gyrus has been demonstrated, which may explain the cellular dysregulations underlying the altered cognitive processing in the dentate gyrus associated with schizophrenia.

2.
Biomedicines ; 11(12)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38137458

RESUMO

Drug-resistant epilepsy (DRE) is associated with high extracellular levels of glutamate. Studies support the idea that cannabidiol (CBD) decreases glutamate over-release. This study focused on investigating whether CBD reduces the evoked glutamate release in cortical synaptic terminals obtained from patients with DRE as well as in a preclinical model of epilepsy. Synaptic terminals (synaptosomes) were obtained from the epileptic neocortex of patients with drug-resistant temporal lobe epilepsy (DR-TLE, n = 10) or drug-resistant extratemporal lobe epilepsy (DR-ETLE, n = 10) submitted to epilepsy surgery. Synaptosomes highly purified by Percoll-sucrose density gradient were characterized by confocal microscopy and Western blot. Synaptosomes were used to estimate the high KCl (33 mM)-evoked glutamate release in the presence of CBD at different concentrations. Our results revealed responsive tissue obtained from seven patients with DR-TLE and seven patients with DR-ETLE. Responsive tissue showed lower glutamate release (p < 0.05) when incubated with CBD at low concentrations (less than 100 µM) but not at higher concentrations. Tissue that was non-responsive to CBD (DR-TLE, n = 3 and DR-ELTE, n = 3) showed high glutamate release despite CBD exposure at different concentrations. Simultaneously, a block of the human epileptic neocortex was used to determine its viability through whole-cell and extracellular electrophysiological recordings. The electrophysiological evaluations supported that the responsive and non-responsive human epileptic neocortices used in the present study exhibited proper neuronal viability and stability to acquire electrophysiological responses. We also investigated whether the subchronic administration of CBD could reduce glutamate over-release in a preclinical model of temporal lobe epilepsy. Administration of CBD (200 mg/kg, p.o. every 24 h for 7 days) to rats with lithium-pilocarpine-evoked spontaneous recurrent seizures reduced glutamate over-release in the hippocampus. The present study revealed that acute exposure to low concentrations of CBD can reduce the glutamate over-release in synaptic terminals obtained from some patients with DRE. This effect is also evident when applied subchronically in rats with spontaneous recurrent seizures. An important finding was the identification of a group of patients that were non-responsive to CBD effects. Future studies are essential to identify biomarkers of responsiveness to CBD to control DRE.

3.
Cell Mol Neurobiol ; 43(8): 4007-4022, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37874456

RESUMO

Growing evidence supports the notion that brain-derived neurotrophic factor (BDNF) and lactate are potent modulators of mammalian brain function. The modulatory actions of those biomolecules influence a wide range of neuronal responses, from the shaping of neuronal excitability to the induction and expression of structural and synaptic plasticity. The biological actions of BDNF and lactate are mediated by their cognate receptors and specific transporters located in the neuronal membrane. Canonical functions of BDNF occur via the tropomyosin-related kinase B receptor (TrkB), whereas lactate acts via monocarboxylate transporters or the hydroxycarboxylic acid receptor 1 (HCAR1). Both receptors are highly expressed in the central nervous system, and some of their physiological actions are particularly well characterized in the hippocampus, a brain structure involved in the neurophysiology of learning and memory. The multifarious neuronal circuitry between the axons of the dentate gyrus granule cells, mossy fibers (MF), and pyramidal neurons of area CA3 is of great interest given its role in specific mnemonic processes and involvement in a growing number of brain disorders. Whereas the modulation exerted by BDNF via TrkB has been extensively studied, the influence of lactate via HCAR1 on the properties of the MF-CA3 circuit is an emerging field. In this review, we discuss the role of both systems in the modulation of brain physiology, with emphasis on the hippocampal CA3 network. We complement this review with original data that suggest cross-modulation is exerted by these two independent neuromodulatory systems.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Fibras Musgosas Hipocampais , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fibras Musgosas Hipocampais/metabolismo , Ácido Láctico/metabolismo , Hipocampo/metabolismo , Células Piramidais/metabolismo , Proteínas de Transporte/metabolismo , Região CA3 Hipocampal/metabolismo , Mamíferos/metabolismo
4.
Neuroscience ; 532: 65-78, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37776946

RESUMO

The blockade of 5-HT6 receptors represents an experimental approach that might ameliorate the memory deficits associated with brain disorders, including Alzheimer's disease and schizophrenia. However, the synaptic mechanism by which 5-HT6 receptors control the GABAergic and glutamatergic synaptic transmission is barely understood. In this study, we demonstrate that pharmacological manipulation of 5-HT6 receptors with the specific agonist EMD 386088 (7.4 nM) or the antagonist SB-399885 (300 nM) modulates the field inhibitory postsynaptic potentials of the dorsal hippocampus and controls the strength of the population spike of pyramidal cells. Likewise, pharmacological modulation of 5-HT6 controls the magnitude of paired-pulse inhibition, a phenomenon mediated by GABAergic interneurons acting via GABAA receptors of pyramidal cells. The effects of pharmacological manipulation of the 5-HT6 receptor were limited to GABAergic transmission and did not affect the strength of field excitatory postsynaptic potentials mediated by the Schaffer collaterals axons. Lastly, in a modified version of the Pavlovian autoshaping task that requires the activation of the hippocampal formation, we demonstrated that the anti-amnesic effect induced by the blockade of the 5-HT6 receptor is prevented when the GAT1 transporter is blocked, suggesting that modulation of GABAergic transmission is required for the anti-amnesic properties of 5-HT6 receptor antagonists.


Assuntos
Hipocampo , Receptores de Serotonina , Ratos , Animais , Ratos Wistar , Receptores de Serotonina/metabolismo , Células Piramidais/fisiologia , Transmissão Sináptica/fisiologia , Receptores de GABA-A
5.
Cell Transplant ; 32: 9636897231177357, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37291807

RESUMO

Obesity has been linked to cognitive impairment through systemic low-grade inflammation. High fat and sugar diets (HFSDs) also induce systemic inflammation, either by induced Toll-like receptor 4 response, or by causing dysbiosis. This study aimed to evaluate the effect of symbiotics supplementation on spatial and working memory, butyrate concentration, neurogenesis, and electrophysiological recovery of HFSD-fed rats. In a first experiment, Sprague-Dawley male rats were given HFSD for 10 weeks, after which they were randomized into 2 groups (n = 10 per group): water (control), or Enterococcus faecium + inulin (symbiotic) administration, for 5 weeks. In the fifth week, spatial and working memory was analyzed through the Morris Water Maze (MWM) and Eight-Arm Radial Maze (RAM) tests, respectively, with 1 week apart between tests. At the end of the study, butyrate levels from feces and neurogenesis at hippocampus were determined. In a second experiment with similar characteristics, the hippocampus was extracted to perform electrophysiological studies. Symbiotic-supplemented rats showed a significantly better memory, butyrate concentrations, and neurogenesis. This group also presented an increased firing frequency in hippocampal neurons [and a larger N-methyl-d-aspartate (NMDA)/α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) current ratio] suggesting an increase in NMDA receptors, which in turn is associated with an enhancement in long-term potentiation and synaptic plasticity. Therefore, our results suggest that symbiotics could restore obesity-related memory impairment and promote synaptic plasticity.


Assuntos
Agave , Memória Espacial , Ratos , Animais , Masculino , Agave/metabolismo , Inulina/farmacologia , Inulina/uso terapêutico , Ratos Sprague-Dawley , Hipocampo/metabolismo , Plasticidade Neuronal/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Aprendizagem em Labirinto/fisiologia , Obesidade/terapia , Suplementos Nutricionais , Inflamação
6.
Neurochem Res ; 48(7): 2206-2219, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36862323

RESUMO

Neurogenesis, the formation of new neurons in the brain, occurs throughout the lifespan in the subgranular zone of the dentate gyrus and subventricular zone (SVZ) lining the lateral ventricles of the mammal brain. In this process, gamma-aminobutyric acid (GABA) and its ionotropic receptor, the GABAA receptor (GABAAR), play a critical role in the proliferation, differentiation, and migration process of neural stem/progenitor cells (NPC). Taurine, a non-essential amino acid widely distributed throughout the central nervous system, increases the proliferation of SVZ progenitor cells by a mechanism that may involve GABAAR activation. Therefore, we characterized the effects of taurine on the differentiation process of NPC expressing GABAAR. Preincubation of NPC-SVZ with taurine increased microtubule-stabilizing proteins assessed with the doublecortin assay. Taurine, like GABA, stimulated a neuronal-like morphology of NPC-SVZ and increased the number and length of primary, secondary, and tertiary neurites compared with control NPC of the SVZ. Furthermore, neurite outgrowth was prevented when simultaneously incubating cells with taurine or GABA and the GABAAR blocker, picrotoxin. Patch-clamp recordings revealed a series of modifications in the NPCs' passive and active electrophysiological properties exposed to taurine, including regenerative spikes with kinetic properties similar to the action potentials of functional neurons.


Assuntos
Ventrículos Laterais , Células-Tronco Neurais , Animais , Taurina/farmacologia , Células-Tronco Neurais/metabolismo , Diferenciação Celular , Neurogênese , Ácido gama-Aminobutírico/metabolismo , Proliferação de Células , Mamíferos
7.
Hippocampus ; 33(8): 906-921, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36938755

RESUMO

Experimental manipulations that interfere with the functional expression of N-methyl-D-aspartate receptors (NMDARs) during prenatal neurodevelopment or critical periods of postnatal development are models that mimic behavioral and neurophysiological abnormalities of schizophrenia. Blockade of NMDARs with MK-801 during early postnatal development alters glutamate release and impairs the induction of NMDAR-dependent long-term plasticity at the CA1 area of the hippocampus. However, it remains unknown if other forms of hippocampal plasticity, such as α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-mediated short- and long-term potentiation, are compromised in response to neonatal treatment with MK-801. Consistent with this tenet, short- and long-term potentiation between dentate gyrus axons, the mossy fibers (MF), onto CA3 pyramidal cells (CA3 PCs) are mediated by AMPARs. By combining whole-cell patch clamp and extracellular recordings, we have demonstrated that transient blockade of NMDARs during early postnatal development induces a series of pre- and postsynaptic modifications at the MF-CA3 synapse. We found reduced glutamate release from the mossy boutons, increased paired-pulse ratio, and reduced AMPAR-mediated MF LTP levels. At the postsynaptic level, we found an altered NMDA/AMPA ratio and dysregulation of several potassium conductances that increased the excitability of CA3 PCs. In addition, MK-801-treated animals exhibited impaired spatial memory retrieval in the Barnes maze task. Our data demonstrate that transient hypofunction of NMDARs impacts NMDAR-independent forms of synaptic plasticity of the hippocampus.


Assuntos
Potenciação de Longa Duração , Receptores de N-Metil-D-Aspartato , Animais , Potenciação de Longa Duração/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Fibras Musgosas Hipocampais/fisiologia , Maleato de Dizocilpina/farmacologia , Células Piramidais/fisiologia , Hipocampo/metabolismo , Sinapses/fisiologia , Glutamatos , Transmissão Sináptica/fisiologia
8.
Brain Behav Immun ; 105: 67-81, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35803480

RESUMO

The epidemiological association between bacterial or viral maternal infections during pregnancy and increased risk for developing psychiatric disorders in offspring is well documented. Numerous rodent and non-human primate studies of viral- or, to a lesser extent, bacterial-induced maternal immune activation (MIA) have documented a series of neurological alterations that may contribute to understanding the pathophysiology of schizophrenia and autism spectrum disorders. Long-term neuronal and behavioral alterations are now ascribed to the effect of maternal proinflammatory cytokines rather than the infection itself. However, detailed electrophysiological alterations in brain areas relevant to psychiatric disorders, such as the dorsal hippocampus, are lacking in response to bacterial-induced MIA. This study determined if electrophysiological and morphological alterations converge in CA1 pyramidal cells (CA1 PC) from the dorsal hippocampus in bacterial-induced MIA offspring. A series of changes in the functional expression of K+ and Na+ ion channels altered the passive and active membrane properties and triggered hyperexcitability of CA1 PC. Contributing to the hyperexcitability, the somatic A-type potassium current (IA) was decreased in MIA CA1 PC. Likewise, the spontaneous glutamatergic and GABAergic inputs were dysregulated and biased toward increased excitation, thereby reshaping the excitation-inhibition balance. Consistent with these findings, the dendritic branching complexity of MIA CA1 PC was reduced. Together, these morphophysiological alterations modify CA1 PC computational capabilities and contribute to explaining cellular alterations that may underlie the cognitive symptoms of MIA-associated psychiatric disorders.


Assuntos
Imunidade , Neurônios , Canais de Potássio , Animais , Transtorno do Espectro Autista/imunologia , Região CA1 Hipocampal/citologia , Regulação para Baixo , Feminino , Neurônios/metabolismo , Canais de Potássio/metabolismo , Gravidez , Células Piramidais/imunologia , Esquizofrenia/imunologia
9.
Neurotoxicology ; 91: 128-139, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35580742

RESUMO

In C57BL/6 J mice, systemic inflammation was induced by administering bacterial LPS (1 mg/kg) intraperitoneally. In response, animals exhibited hypokinesia, piloerection, and a slight decrease in body temperature accompanied by increased serum levels of the proinflammatory cytokine TNF-α. 24 h after the immunogenic challenge, acute cortical slices were prepared, and whole-cell patch-clamp recordings were performed in morphologically identified prelimbic neurons of the mice's prefrontal cortex. Electrophysiologic alterations included changes in the kinetics parameters of the fast-inactivating sodium and slow-inactivating potassium currents. In current-clamp mode, our recordings revealed alterations in several conductances that shape the intrinsic excitability of prelimbic neurons. The action potential exhibited changes in latency, amplitude, and the rheobase current to elicit firing discharge. Likewise, phase plots of the action potentials uncovered alterations in the repetitive firing of prelimbic neurons. Consistent with these changes, the afterhyperpolarization conductance and the slowly decaying, calcium-dependent after-hyperpolarization current that follows an action potential were decreased in response to systemic LPS. Our data demonstrate that immune activation alters the ionic currents that shape the intrinsic excitability and predicts dysregulation of non-synaptic forms of neuronal plasticity modulated by the intrinsic excitability of prefrontal cortex neurons.


Assuntos
Potássio , Sódio , Potenciais de Ação/fisiologia , Animais , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Potássio/fisiologia
10.
Sensors (Basel) ; 22(3)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35162025

RESUMO

Video tracking involves detecting previously designated objects of interest within a sequence of image frames. It can be applied in robotics, unmanned vehicles, and automation, among other fields of interest. Video tracking is still regarded as an open problem due to a number of obstacles that still need to be overcome, including the need for high precision and real-time results, as well as portability and low-power demands. This work presents the design, implementation and assessment of a low-power embedded system based on an SoC-FPGA platform and the honeybee search algorithm (HSA) for real-time video tracking. HSA is a meta-heuristic that combines evolutionary computing and swarm intelligence techniques. Our findings demonstrated that the combination of SoC-FPGA and HSA reduced the consumption of computational resources, allowing real-time multiprocessing without a reduction in precision, and with the advantage of lower power consumption, which enabled portability. A starker difference was observed when measuring the power consumption. The proposed SoC-FPGA system consumed about 5 Watts, whereas the CPU-GPU system required more than 200 Watts. A general recommendation obtained from this research is to use SoC-FPGA over CPU-GPU to work with meta-heuristics in computer vision applications when an embedded solution is required.


Assuntos
Algoritmos , Software , Animais , Abelhas
11.
Neurobiol Aging ; 112: 27-38, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35041997

RESUMO

Neuronal processing from the dentate gyrus to the hippocampus is critical for storage and recovery of new memory traces. In area CA3, GABAergic interneurons form a strong barrage of inhibition that modulates pyramidal cells. A well-established feature of aging is decreased GABAergic inhibition, a phenomenon that contributes to the exacerbated excitability of aged pyramidal cells. In hippocampal slices of aged rats (22-28 months old) we examined the properties of regular spiking CA3 interneurons with patch-clamp whole-cell recordings. We found enhanced firing discharge without altering the maximal firing rate of aged regular spiking interneurons. In the mossy fibers (MF) to interneurons synapse, a switch in the AMPA receptor subunit composition was found in aged interneurons. Young regular spiking interneurons predominantly express CP AMPA receptors and MF LTD. By contrast, aged regular spiking interneurons contain a higher proportion of CI AMPA receptors and respond with MF LTP. We show for the first time that the specialized MF terminals contacting interneurons, retain synaptic capabilities and provide a novel insight of the interneuron's function during aging.


Assuntos
Interneurônios , Fibras Musgosas Hipocampais , Animais , Hipocampo , Interneurônios/fisiologia , Células Piramidais/fisiologia , Ratos , Sinapses/fisiologia , Transmissão Sináptica/fisiologia
12.
Br J Pharmacol ; 179(8): 1695-1715, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34791647

RESUMO

BACKGROUND AND PURPOSE: Dysregulation of dopaminergic transmission combined with transient hypofunction of N-methyl-d-aspartate receptors (NMDARs) is a key mechanism that may underlie cognitive symptoms of schizophrenia. EXPERIMENTAL APPROACH: Therefore, we aimed to identify electrophysiologic alterations in animals neonatally treated with the NMDA receptor antagonist, MK-801, or with saline solution. KEY RESULTS: Patch-clamp whole-cell recordings from MK-801-treated animals revealed altered passive and active electrophysiologic properties compared with CA1 pyramidal cells from saline-treated animals, including up-regulation of the K+ inward-rectifier conductance and fast-inactivating and slow/non-inactivating K+ currents. Up-regulation of these membrane ionic currents reduced the overall excitability and altered the firing properties of CA1 pyramidal cells. We also explored the capability of cells treated with MK-801 to express intrinsic excitability potentiation, a non-synaptic form of hippocampal plasticity associated with cognition and memory formation. CA1 pyramidal cells from animals treated with MK-801 were unable to convey intrinsic excitability potentiation and had blunted synaptic potentiation. Furthermore, MK-801-treated animals also exhibited reduced cognitive performance in the Barnes maze task. Notably, activation of D1/D5 receptors with SKF-38,393 partially restored electrophysiologic alterations caused by neonatal treatment with MK-801. CONCLUSION AND IMPLICATIONS: Our results offer a molecular and mechanistic explanation based on dysregulation of glutamatergic transmission, in addition to dopaminergic transmission, that may contribute to the understanding of the cognitive deterioration associated with schizophrenia.


Assuntos
Maleato de Dizocilpina , Receptores de Dopamina D1 , Receptores de Dopamina D5 , Receptores de N-Metil-D-Aspartato , Animais , Maleato de Dizocilpina/farmacologia , Dopamina/farmacologia , Hipocampo/metabolismo , Neurônios/metabolismo , Células Piramidais/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D5/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transmissão Sináptica
13.
Front Neurosci ; 15: 740282, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35140581

RESUMO

The transient histaminergic system is among the first neurotransmitter systems to appear during brain development in the rat mesencephalon/rhombencephalon. Histamine increases FOXP2-positive deep-layer neuron differentiation of cortical neural stem cells through H1 receptor activation in vitro. The in utero or systemic administration of chlorpheniramine (H1 receptor antagonist/inverse agonist) during deep-layer cortical neurogenesis decreases FOXP2 neurons in the developing cortex, and H1R- or histidine decarboxylase-knockout mice show impairment in learning and memory, wakefulness and nociception, functions modulated by the cerebral cortex. Due to the role of H1R in cortical neural stem cell neurogenesis, the purpose of this study was to evaluate the postnatal impact of the systemic administration of chlorpheniramine during deep-layer cortical neuron differentiation (E12-14) in the primary motor cortex (M1) of neonates (P0) and 21-day-old pups (P21). Chlorpheniramine or vehicle were systemically administered (5 mg/kg, i.p.) to pregnant Wistar rats at gestational days 12-14, and the expression and distribution of deep- (FOXP2 and TBR1) and superficial-layer (SATB2) neuronal cortical markers were analyzed in neonates from both groups. The qRT-PCR analysis revealed a reduction in the expression of Satb2 and FoxP2. However, Western blot and immunofluorescence showed increased protein levels in the chlorpheniramine-treated group. In P21 pups, the three markers showed impaired distribution and increased immunofluorescence in the experimental group. The Sholl analysis evidenced altered dendritic arborization of deep-layer neurons, with lower excitability in response to histamine, as evaluated by whole-cell patch-clamp recording, as well as diminished depolarization-evoked [3H]-glutamate release from striatal slices. Overall, these results suggest long-lasting effects of blocking H1Rs during early neurogenesis that may impact the pathways involved in voluntary motor activity and cognition.

14.
Neuroscience ; 456: 95-105, 2021 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-31917351

RESUMO

Metabotropic glutamate receptors (mGluRs) are a group of G-protein-coupled receptors that exert a broad array of modulatory actions at excitatory synapses of the central nervous system. In the hippocampus, the selective activation of the different mGluRs modulates the intrinsic excitability, the strength of synaptic transmission, and induces multiple forms of long-term plasticity. Despite the relevance of mGluRs in the normal function of the hippocampus, we know very little about the changes that mGluRs functionality undergoes during the non-pathological aging. Here, we review data concerning the physiological actions of mGluRs, with particular emphasis on hippocampal area CA3. Later, we examine changes in the expression and functionality of mGluRs during the aging process. We complement this review with original data showing an array of electrophysiological modifications observed in the synaptic transmission and intrinsic excitability of aged CA3 pyramidal cells in response to the pharmacological stimulation of the different mGluRs.


Assuntos
Região CA3 Hipocampal/citologia , Fibras Musgosas Hipocampais , Receptores de Glutamato Metabotrópico , Humanos , Receptores de Glutamato Metabotrópico/metabolismo , Sinapses/metabolismo , Transmissão Sináptica
15.
Neuropharmacology ; 182: 108379, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33130041

RESUMO

The dentate gyrus and hippocampal area CA3 region of the mammalian brain contains the highest levels of brain-derived neurotrophic factor (BDNF) and its canonical membrane receptor, tropomyosin-related kinase B (TrkB). Therefore, the present study examines the expression and physiological responses triggered by activation of TrkB on hippocampal area CA3 interneurones and pyramidal cells of the rat hippocampus. Triple immunolabelling for TrkB, glutamate decarboxylase 67, and the calcium-binding proteins parvalbumin, calbindin or calretinin confirms the somatic expression of TrkB in all CA3 sublayers. TrkB-positive interneurones with fast-spiking discharge are restricted to strata oriens and lucidum, whereas regular-spiking interneurones are found in the strata lucidum, radiatum and lacunosum-moleculare. Activation of TrkB receptors with 7,8-dihydroxyflavone (DHF) modulates amplitude and frequency of spontaneous synaptic currents recorded from CA3 interneurones. Furthermore, the isolated excitatory postsynaptic currents (EPSC) of CA3 interneurones evoked by the mossy fibres (MF) or commissural/associational (C/A) axons, show input-specific synaptic potentiation in response to TrkB stimulation. On CA3 pyramidal cells, stimulation with DHF potentiates the MF synaptic transmission and increases the MF-EPSP - spike coupling. The latter exhibits a dramatic increase when picrotoxin is bath perfused after DHF, indicating that local interneurones restrain the excitability mediated by activation of TrkB. Therefore, we propose that release of BDNF on area CA3 reshapes the output of this hippocampal region by simultaneous activation of TrkB on GABAergic interneurones and pyramidal cells.


Assuntos
Região CA3 Hipocampal/metabolismo , Interneurônios/metabolismo , Células Piramidais/metabolismo , Receptor trkB/biossíntese , Potenciais de Ação , Animais , Região CA3 Hipocampal/química , Potenciais Pós-Sinápticos Excitadores/fisiologia , Expressão Gênica , Interneurônios/química , Masculino , Técnicas de Cultura de Órgãos , Células Piramidais/química , Células Piramidais/fisiologia , Ratos , Ratos Sprague-Dawley , Receptor trkB/genética
16.
PLoS One ; 15(11): e0242309, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33180836

RESUMO

Neuronal activity within the physiologic range stimulates lactate production that, via metabolic pathways or operating through an array of G-protein-coupled receptors, regulates intrinsic excitability and synaptic transmission. The recent discovery that lactate exerts a tight control of ion channels, neurotransmitter release, and synaptic plasticity-related intracellular signaling cascades opens up the possibility that lactate regulates synaptic potentiation at central synapses. Here, we demonstrate that extracellular lactate (1-2 mM) induces glutamatergic potentiation on the recurrent collateral synapses of hippocampal CA3 pyramidal cells. This potentiation is independent of lactate transport and further metabolism, but requires activation of NMDA receptors, postsynaptic calcium accumulation, and activation of a G-protein-coupled receptor sensitive to cholera toxin. Furthermore, perfusion of 3,5- dihydroxybenzoic acid, a lactate receptor agonist, mimics this form of synaptic potentiation. The transduction mechanism underlying this novel form of synaptic plasticity requires G-protein ßγ subunits, inositol-1,4,5-trisphosphate 3-kinase, PKC, and CaMKII. Activation of these signaling cascades is compartmentalized in a synapse-specific manner since lactate does not induce potentiation at the mossy fiber synapses of CA3 pyramidal cells. Consistent with this synapse-specific potentiation, lactate increases the output discharge of CA3 neurons when recurrent collaterals are repeatedly activated during lactate perfusion. This study provides new insights into the cellular mechanisms by which lactate, acting via a membrane receptor, contributes to the memory formation process.


Assuntos
Região CA3 Hipocampal/fisiologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Ácido Láctico/farmacologia , Sinapses/metabolismo , Animais , Região CA3 Hipocampal/efeitos dos fármacos , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Toxina da Cólera/farmacologia , Masculino , Plasticidade Neuronal , Ácido Oxâmico/farmacologia , Proteína Quinase C/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais
17.
Front Cell Dev Biol ; 8: 564561, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042999

RESUMO

Maternal diabetes has been related to low verbal task scores, impaired fine and gross motor skills, and poor performance in graphic and visuospatial tasks during childhood. The primary motor cortex is important for controlling motor functions, and embryos exposed to high glucose show changes in cell proliferation, migration, and differentiation during corticogenesis. However, the existing studies do not discriminate between embryos with or without neural tube defects, making it difficult to conclude whether the reported changes are related to neural tube defects or other anomalies. Furthermore, postnatal effects on central nervous system cytoarchitecture and function have been scarcely addressed. Through molecular, biochemical, morphological, and electrophysiological approaches, we provide evidence of impaired primary motor cerebral cortex lamination and neuronal function in pups from diabetic rats, showing an altered distribution of SATB2, FOXP2, and TBR1, impaired cell migration and polarity, and decreased excitability of deep-layer cortical neurons, suggesting abnormalities in cortico-cortical and extra-cortical innervation. Furthermore, phase-plot analysis of action potentials suggests changes in the activity of potassium channels. These results indicate that high-glucose insult during development promotes complex changes in migration, neurogenesis, cell polarity establishment, and dendritic arborization, which in turn lead to reduced excitability of deep-layer cortical neurons.

18.
Toxicol Appl Pharmacol ; 395: 114980, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32234516

RESUMO

Toluene can be intentionally misused by adolescents to experience psychoactive effects. Toluene has a complex mechanism of action and broad behavioral effects, among which memory impairment is reported consistently. We have previously reported that repeated toluene inhalation (8000 ppm) increases layer 5 prelimbic pyramidal cells' excitability in the medial prefrontal cortex (mPFC) of adolescent rats. Toluene also produces reactive oxygen species (ROS), which activate glial cells. Here, we tested the hypothesis that the anti-inflammatory agent minocycline would decrease toluene's effects because it inhibits NF-κB (nuclear factor enhancer of the kappa light chains of activated B cells) and reduces pro-inflammatory cytokine and ROS production. Our results show that minocycline (50 mg/kg, ip, for 10 days) prevents the hyperexcitability of mPFC neurons observed after repeated 8000 ppm toluene exposure (30 min/day, 2×/day for 10 days). Minocycline prevents toluene-induced hyperexcitability by a mechanism that averts the loss of the slow calcium-dependent potassium current, and normalizes mPFC neurons' firing frequency. These effects are accompanied by significant decreased expression of astrocytes and activated microglia in the mPFC, reduced NLRP3 inflammasome activation and mRNA expression levels of the pro-inflammatory cytokine interleukin 1ß (IL-1ß), as well as increased mRNA expression of the anti-inflammatory cytokine transforming growth factor ß (TGF-ß). Minocycline also prevents toluene-induced memory impairment in adolescent rats in the passive avoidance task and the temporal order memory test in which the mPFC plays a central role. These results show that neuroinflammation produces several effects of repeated toluene administration at high concentrations, and minocycline can significantly prevent them.


Assuntos
Anti-Inflamatórios/administração & dosagem , Transtornos da Memória/prevenção & controle , Minociclina/administração & dosagem , Neurônios/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Tolueno/toxicidade , Administração por Inalação , Animais , Expressão Gênica/efeitos dos fármacos , Abuso de Inalantes , Interleucina-1beta/genética , Masculino , Transtornos da Memória/induzido quimicamente , Proteína 3 que Contém Domínio de Pirina da Família NLR/fisiologia , Neurônios/fisiologia , Córtex Pré-Frontal/patologia , Córtex Pré-Frontal/fisiopatologia , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/antagonistas & inibidores , Tolueno/administração & dosagem , Fator de Crescimento Transformador beta/genética
19.
Neurotoxicol Teratol ; 73: 9-14, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30826315

RESUMO

Toluene is an organic solvent commonly misused by inhalation among adolescents to experience psychoactive effects. Repeated toluene exposure produces several cognitive deficits, including working memory impairment in which the medial prefrontal cortex (mPFC) plays a central role. Among other effects, toluene antagonizes NMDA receptors, enhance GABAA receptor-mediated responses and increases dopamine release. We have recently reported that animals repeatedly exposed to toluene show increased mPFC excitability; however, alterations in synaptic transmission, including long-term synaptic plasticity of glutamatergic responses have not been studied thus far. Here we used extracellular recordings to determine the effects of repeated toluene exposure (8000 ppm for 30 min, twice a day, for ten days) on the synaptic transmission converging on prelimbic layer 5 pyramidal neurons of the mPFC in adolescent male Wistar rats. Repeated toluene exposure increased mPFC's synaptic strength and reduced the inhibitory transmission assessed by input-output curves and paired-pulse inhibition protocols, respectively. Both toluene and a selective D1 receptor antagonist blocked the ability of exogenous dopamine to induce synaptic potentiation. Repeated toluene exposure also altered the ability of NMDA to induce synaptic depression of excitatory transmission. Taken together, the changes in synaptic strength and impairment of the NMDA-mediated plasticity of the mPFC demonstrate a series of synaptic modifications of the glutamatergic transmission that may underlie the cognitive impairment resulting from repeated toluene exposure.


Assuntos
Córtex Pré-Frontal/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Tolueno/toxicidade , Animais , Dopamina/metabolismo , Ácido Glutâmico/metabolismo , Ácido Cinurênico/farmacologia , Masculino , N-Metilaspartato/metabolismo , Plasticidade Neuronal/efeitos dos fármacos , Picrotoxina/farmacologia , Racloprida/farmacologia , Ratos , Ratos Wistar
20.
Neuroscience ; 404: 205-217, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30703507

RESUMO

Transient hypofunction of NMDA receptors during brain maturation has been linked to cellular and behavioral alterations that mirror symptoms of schizophrenia. In line with this notion, neonatal administration of the non-competitive NMDA receptor antagonist, MK-801, mimics the negative and cognitive symptoms of schizophrenia. By combining behavioral evaluations with extracellular recordings in acute hippocampal slices, we uncovered a progressive alteration of synaptic transmission of animals neonatally treated with MK-801. During the periadolescent stage (up to postnatal day 30), before any behavioral alterations were observed, the synaptic transmission of hippocampal area CA1 exhibited progressive signs of alteration, such as the reduction in synaptic strength and impairment of short- and long-term forms of synaptic plasticity. As expected, behavioral impairments were consistently observed during the young adult stage (postnatal day 90), a period in which a steady deterioration of long-term depression and long-term potentiation was observed. Taken together, these results suggest that synaptic dysregulation precedes behavioral deterioration in a model that mimics the negative and cognitive symptoms of schizophrenia.


Assuntos
Região CA1 Hipocampal/efeitos dos fármacos , Disfunção Cognitiva/fisiopatologia , Maleato de Dizocilpina/toxicidade , Antagonistas de Aminoácidos Excitatórios/toxicidade , Plasticidade Neuronal/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Região CA1 Hipocampal/fisiologia , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/psicologia , Masculino , Plasticidade Neuronal/fisiologia , Ratos , Ratos Wistar , Transmissão Sináptica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...