Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38706297

RESUMO

The global emphasis on sustainable technologies has become a paramount concern for nations worldwide. Specifically, numerous sustainable methods are being explored as promising alternatives to the well-established vapor-compression technologies in cooling and heating devices. One such avenue gaining traction within the scientific community is the elastocaloric (eC) effect. This phenomenon holds promise for efficient cooling and heating processes without causing environmental harm. Studies carried out at the nanoscale have demonstrated the efficiency of the eC effect, proving to be comparable to that of state-of-the-art macroscopic systems. In this study, we used classical molecular dynamics simulations to investigate the elastocaloric effect for the recently synthesized γ-graphyne. Our analysis goes beyond obtaining changes in eC temperature and the coefficient of performance (COP) for two species of γ-graphyne nanoribbons (armchair and zigzag). We also explore their dependence on various conditions, including whether they are deposited on a substrate or prestrained. Our findings reveal a substantial enhancement in the elastocaloric effect for γ-graphyne nanoribbons when subjected to prestrain, amplifying it by at least 1 order of magnitude. Under certain conditions, the changes in the eC temperature and the COP of the structures reach expressive values as high as 224 K and 14, respectively. We discuss the implications of these results by examining the shape and behavior of the carbon-carbon bond lengths within the structures.

2.
Phys Chem Chem Phys ; 26(15): 11589-11596, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38533829

RESUMO

In this work, we proposed and investigated the structural and electronic properties of boron-based nanoscrolls (armchair and zigzag) using the DFTB+ method. We also investigated the electroactuation process (injecting and removing charges). A giant electroactuation was observed, but the results show relevant differences between the borophene and carbon nanoscrolls. The molecular dynamics simulations showed that the scrolls are thermally and structurally stable for a large range of temperatures (up to 600 K), and the electroactuation process can be easily tuned and can be entirely reversible for some configurations.

3.
ACS Appl Mater Interfaces ; 16(2): 2417-2427, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38171351

RESUMO

Natural ores are abundant, cost-effective, and environmentally friendly. Ultrathin (2D) layers of a naturally abundant van der Waals mineral, Biotite, have been prepared in bulk via exfoliation. We report here that this 2D Biotene material has shown extraordinary Li-Na-ion battery anode properties with ultralong cycling stability. Biotene shows 302 and 141 mAh g-1 first cycle-specific charge capacity for Li- and Na-ion battery applications with ∼90% initial Coulombic efficiency. The electrode exhibits significantly extended cycling stability with ∼75% capacity retention after 4000 cycles even at higher current densities (500-2000 mA g-1). Further, density functional theory studies show the possible Li intercalation mechanism between the 2D Biotene layers. Our work brings new directions toward designing the next generation of metal-ion battery anodes.

4.
Nanoscale ; 15(20): 9022-9030, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37129437

RESUMO

Radiofrequency (RF) energy harvesting is receiving increased attention in today's digital era due to its potential to replace or improve the longevity of energy storage devices in low-power IoT devices. RF energy is available in the ambient environment, but efficient devices are still not commonly known for RF energy harvesting applications. Here, the main goal is to develop an RF energy harvesting device using multi-layered two-dimensional (2D) galena (PbS). A Schottky diode is fabricated by using 2D galena. RF energy harvesting is demonstrated using a handheld radio transceiver with a carrier frequency of 140-170 MHz. The device extracts RF energy and produces an output DC voltage of a maximum of 1.8 volts and a corresponding output power of 38 mW at 150 MHz, and lights up an LED within a range of 100 cm. At 150 MHz, the device's power conversion efficiency is found to be 19%. DFT calculations support the experimental observations of energy harvesting using 2D galena. The performance results show that 2D galena is a promising material for RF energy harvesting devices.

5.
Phys Chem Chem Phys ; 25(18): 13088-13093, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37115202

RESUMO

The advent of graphene has renewed the interest in other 2D carbon-based materials. In particular, new structures have been proposed by combining hexagonal and other carbon rings in different ways. Recently, Bhattacharya and Jana have proposed a new carbon allotrope, composed of different polygonal carbon rings containing 4, 5, 6, and 10 atoms, named tetra-penta-deca-hexagonal-graphene (TPDH-graphene). This unusual topology results in interesting mechanical, electronic, and optical properties with several potential applications, including UV protection. Like other 2D carbon structures, chemical functionalizations can be used to tune TPDH-graphene's physical/chemical properties. In this work, we investigate the hydrogenation dynamics of TPDH-graphene and its effects on its electronic structure, combining DFT and fully atomistic reactive molecular dynamics simulations. Our results show that H atoms are mainly incorporated on tetragonal ring sites (up to 80% at 300 K), leading to the appearance of well-delimited pentagonal carbon stripes. The electronic structure of the hydrogenated structures shows the formation of narrow bandgaps with the presence of Dirac cone-like structures, indicative of anisotropic transport properties.

6.
Materials (Basel) ; 16(5)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36902922

RESUMO

Li-S batteries still suffer from two of the major challenges: polysulfide shuttle and low inherent conductivity of sulfur. Here, we report a facile way to develop a bifunctional separator coated with fluorinated multiwalled carbon nanotubes. Mild fluorination does not affect the inherent graphitic structure of carbon nanotubes as shown by transmission electron microscopy. Fluorinated carbon nanotubes show an improved capacity retention by trapping/repelling lithium polysulfides at the cathode, while simultaneously acting as the "second current collector". Moreover, reduced charge-transfer resistance and enhanced electrochemical performance at the cathode-separator interface result in a high gravimetric capacity of around 670 mAh g-1 at 4C. Unique chemical interactions between fluorine and carbon at the separator and the polysulfides, studied using DFT calculations, establish a new direction of utilizing highly electronegative fluorine moieties and absorption-based porous carbons for mitigation of polysulfide shuttle in Li-S batteries.

7.
ACS Biomater Sci Eng ; 9(1): 230-245, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36484626

RESUMO

Bones are responsible for body support, structure, motion, and several other functions that enable and facilitate life for many different animal species. They exhibit a complex network of distinct physical structures and mechanical properties, which ultimately depend on the fraction of their primary constituents at the molecular scale. However, the relationship between structure and mechanical properties in bones are still not fully understood. Here, we investigate structural and mechanical properties of all-atom bone molecular models composed of type-I collagen, hydroxyapatite (HA), and water by means of fully atomistic molecular dynamics simulations. Our models encompass an extrafibrillar volume (EFV) and consider mineral content in both the EFV and intrafibrillar volume (IFV), consistent with experimental observations. We investigate solvation structures and elastic properties of bone microfibril models with different degrees of mineralization, ranging from highly mineralized to weakly mineralized and nonmineralized models. We find that the local tetrahedral order of water is lost in similar ways in the EFV and IFV regions for all HA containing models, as calcium and phosphate ions are strongly coordinated with water molecules. We also subject our models to tensile loads and analyze the spatial stress distribution over the nanostructure of the material. Our results show that both mineral and water contents accumulate significantly higher stress levels, most notably in the EFV, thus revealing that this region, which has been only recently incorporated in all-atom molecular models, is fundamental for studying the mechanical properties of bones at the nanoscale. Furthermore, our results corroborate the well-established finding that high mineral content makes bone stiffer.


Assuntos
Osso e Ossos , Microfibrilas , Animais , Modelos Moleculares , Água , Minerais
8.
ACS Appl Mater Interfaces ; 14(47): 53139-53149, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36394999

RESUMO

Transition-metal tellurides (TMTs) are promising materials for "post-graphene age" nanoelectronics and energy storage applications owing to their industry-standard compatibility, high electron mobility, large spin-orbit coupling (SOC), etc. However, tellurium (Te) having a larger ionic radius (Z = 52) and broader d-bands endows TMTs with semimetallic nature, restricting their application in photonic and optoelectronic domains. In this work, we report the optical properties of the quantum-confined semiconducting phase of cobalt ditelluride (CoTe2) for the first time, exhibiting excellent two-color band photoabsorption attributes covering the UV-visible and near-infrared regions. Furthermore, novel excitonic resonances (X) of size-varying CoTe2 nanocrystals and quantum dots (QDs) are indicated by their temperature-dependent emission characteristics, which are attributed to the splitting of band edge states via confinement. On the other hand, the sudden rupture of the large-area CoTe2 nanosheets via ultrasonication incorporates Co vacancy-mediated localized trap states within the band gap, which is attributed to the superior room-temperature photoluminescence (PL) quantum yield of QDs and further corroborated using Raman analysis and atomistic density functional theory (DFT) simulations. Most interestingly, the excitonic peak of CoTe2 QDs reveals a unique positive-to-negative thermal quenching transition phenomenon, owing to the thermal activation of nonradiative surface trap states. These results introduce an exciting approach for the defect-mediated color-saturated light emission that paves the way for solution-processed telluride-based QD light-emitting diodes.

9.
J Am Chem Soc ; 144(39): 17999-18008, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36130080

RESUMO

γ-Graphyne is the most symmetric sp2/sp1 allotrope of carbon, which can be viewed as graphene uniformly expanded through the insertion of two-carbon acetylenic units between all the aromatic rings. To date, synthesis of bulk γ-graphyne has remained a challenge. We here report the synthesis of multilayer γ-graphyne through crystallization-assisted irreversible cross-coupling polymerization. A comprehensive characterization of this new carbon phase is described, including synchrotron powder X-ray diffraction, electron diffraction, lateral force microscopy, Raman spectroscopy, infrared spectroscopy, and cyclic voltammetry. Experiments indicate that γ-graphyne is a 0.48 eV band gap semiconductor, with a hexagonal a-axis spacing of 6.88 Å and an interlayer spacing of 3.48 Å, which is consistent with theoretical predictions. The observed crystal structure has an aperiodic sheet stacking. The material is thermally stable up to 240 °C but undergoes transformation at higher temperatures. While conventional 2D polymerization and reticular chemistry rely on error correction through reversibility, we demonstrate that a periodic covalent lattice can be synthesized under purely kinetic control. The reported methodology is scalable and inspires extension to other allotropes of the graphyne family.

10.
Small ; 18(27): e2201667, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35652507

RESUMO

In this work, the synthesis and characterization of ultrathin metal oxide, called biotene, using liquid-phase exfoliation from naturally abundant biotite are demonstrated. The atomically thin biotene is used for energy harvesting using its flexoelectric response under multiple bending. The effective flexoelectric response increases due to the presence of surface charges, and the voltage increases up to ≈8 V, with a high mechano-sensitivity of 0.79 V N-1 for normal force. This flexoelectric response is further validated by density functional theory (DFT) simulations. The atomically thin biotene shows an increased response in the magnetic field and thermal heating. The synthesis of two-dimensional (2D) metal-oxide biotene suggests a wealth of future 2D-oxide material for energy generation and energy harvesting applications.


Assuntos
Glucose Oxidase , Óxidos , Silicatos de Alumínio , Combinação de Medicamentos , Compostos Ferrosos , Lactoperoxidase , Muramidase
11.
Phys Chem Chem Phys ; 24(22): 13905-13910, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35621060

RESUMO

The concept of a diode is usually applied to electronic and thermal devices but very rarely for mechanical ones. A recently proposed fracture rectification effect in polymer-based structures with triangular void defects has motivated us to test these ideas at the nanoscale using graphene membranes. Using fully-atomistic reactive molecular dynamics simulations we showed that robust rectification-like effects exist. The fracture can be 'guided' to more easily propagate along one specific direction than its opposite. We also observed that there is an optimal value for the spacing between each void for the rectification effect.

12.
Nanoscale ; 14(21): 7788-7797, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35394476

RESUMO

Two-dimensional (2D) materials have been shown to be efficient in energy harvesting. Here, we report the use of waste heat to generate electricity via the combined piezoelectric and triboelectric properties of 2D cobalt telluride (CoTe2). The piezo-triboelectric nanogenerator (PTNG) produced an open-circuit voltage of ∼5 V under 1 N force and the effect of temperature in the range of 305-363 K shows a four-fold energy conversion efficiency improvement. The 2D piezo-tribogenerator shows excellent characteristics with a maximum voltage of ∼10 V, fast response time, and high responsivity. Density functional theory was used to gain further insights and validation of the experimental results. Our results could lead to energy harvesting approaches using 2D materials from various thermal sources and dissipating waste heat from electronic devices.

13.
Materials (Basel) ; 15(6)2022 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-35329726

RESUMO

At the molecular scale, bone is mainly constituted of type-I collagen, hydroxyapatite, and water. Different fractions of these constituents compose different composite materials that exhibit different mechanical properties at the nanoscale, where the bone is characterized as a fiber, i.e., a bundle of mineralized collagen fibrils surrounded by water and hydroxyapatite in the extra-fibrillar volume. The literature presents only models that resemble mineralized collagen fibrils, including hydroxyapatite in the intra-fibrillar volume only, and lacks a detailed prescription on how to devise such models. Here, we present all-atom bone molecular models at the nanoscale, which, differently from previous bone models, include hydroxyapatite both in the intra-fibrillar volume and in the extra-fibrillar volume, resembling fibers in bones. Our main goal is to provide a detailed prescription on how to devise such models with different fractions of the constituents, and for that reason, we have made step-by-step scripts and files for reproducing these models available. To validate the models, we assessed their elastic properties by performing molecular dynamics simulations that resemble tensile tests, and compared the computed values against the literature (both experimental and computational results). Our results corroborate previous findings, as Young's Modulus values increase with higher fractions of hydroxyapatite, revealing all-atom bone models that include hydroxyapatite in both the intra-fibrillar volume and in the extra-fibrillar volume as a path towards realistic bone modeling at the nanoscale.

14.
Adv Mater ; 33(52): e2106084, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34617333

RESUMO

Hexagonal boron nitride (hBN) has received much attention in recent years as a 2D dielectric material with potential applications ranging from catalysts to electronics. hBN is a stable covalent compound with a planar hexagonal lattice and is relatively unreactive to most chemical environments, making the chemical functionalization of hBN challenging. Here, a simple, scalable strategy to fluorinate hBN using a direct gas-phase fluorination technique is reported. The nature of fluorine bonding to the hBN lattice and their chemical coordination are described based on various characterization studies and theoretical models. The fluorine functionalized hBN shows a bandgap reduction and displays a semiconducting behavior due to the fluorination process. Additionally, the fluorinated hBN shows significant improvement in its thermal and friction properties, which could be substantial in applications such as lubricants and thermal fluids. Theory and simulations reveal that the enhanced friction properties of fluorinated hBN result from reduced inter-planar interaction energy by electrostatic repulsion of intercalated fluorine atoms between hBN layers without significant disruption of the in-plane lattice. This technique paves the way for the fluorination of several other 2D structures for various applications such as magnetism and functional nanoscale electronic devices.

15.
Small ; 17(35): e2100909, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34302438

RESUMO

Locating and manipulating nano-sized objects to drive motion is a time and effort consuming task. Recent advances show that it is possible to generate motion without direct intervention, by embedding the source of motion in the system configuration. In this work, an alternative manner to controllably displace nano-objects without external manipulation is demonstrated, by employing spiral-shaped carbon nanotube (CNT) and graphene nanoribbon structures (GNR). The spiral shape contains smooth gradients of curvature, which lead to smooth gradients of bending energy. It is shown that these gradients as well as surface energy gradients can drive nano-oscillators. An energy analysis is also carried out by approximating the carbon nanotube to a thin rod and how torsional gradients can be used to drive motion is discussed. For the nanoribbons, the role of layer orientation is also analyzed. The results show that motion is not sustainable for commensurate orientations, in which AB stacking occurs. For incommensurate orientations, friction almost vanishes, and in this instance, the motion can continue even if the driving forces are not very high. This suggests that mild curvature gradients, which can already be found in existing nanostructures, could provide mechanical stimuli to direct motion.


Assuntos
Grafite , Nanoestruturas , Nanotubos de Carbono , Fricção
16.
Phys Chem Chem Phys ; 23(18): 10807-10813, 2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-33978644

RESUMO

Recently, it was experimentally shown that the performance and thermal stability of the perovskite MAPbI3 were improved upon the adsorption of a molecular layer of caffeine. In this work, we used a hybrid methodology that combines uncoupled monte carlo (UMC) and density functional theory (DFT) simulations to carry out a detailed and comprehensive study of the adsorption mechanism of a caffeine molecule on the surface of MAPbI3. Our results showed that the adsorption distance and energy of a caffeine molecule on the MAPbI3 surface are 2.0 Å and -0.3 eV, respectively. The caffeine/MAPbI3 complex presents a direct bandgap of 2.38 eV with two flat intragap bands distanced 1.15 and 2.18 eV from the top of valence bands. Although the energy band levels are not significantly shifted by the presence of caffeine, the interaction MAPbI3/perovskite is enough to affect the bands' dispersion, particularly the conduction bands.

17.
RSC Adv ; 11(32): 19788-19796, 2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35479224

RESUMO

The impact of micro and nanoplastic debris on our aquatic ecosystem is among the most prominent environmental challenges we face today. In addition, nanoplastics create significant concern for environmentalists because of their toxicity and difficulty in separation and removal. Here we report the development of a 3D printed moving bed water filter (M-3DPWF), which can perform as an efficient nanoplastic scavenger. The enhanced separation of the nanoplastics happens due to the creation of a charged filter material that traps the more surface charged nanoparticles selectively. Synthetic contaminated water from polycarbonate waste has been tested with the filter, and enhanced nanoplastic removal has been achieved. The proposed filtration mechanism of surface-charge based water cleaning is further validated using density function theory (semi-empirical) based simulation. The filter has also shown good structural and mechanical stability in both static and dynamic water conditions. The field suitability of the novel treatment system has also been confirmed using water from various sources, such as sea, river, and pond. Our results suggest that the newly developed water filter can be used for the removal of floating nanoparticles in water as a robust advanced treatment system.

18.
Chemphyschem ; 21(17): 1918-1924, 2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32794322

RESUMO

Popgraphene (PopG) is a new 2D planar carbon allotrope which is composed of 5-8-5 carbon rings. PopG is intrinsically metallic and possesses excellent thermal and mechanical stability. In this work, we report a detailed study of the thermal effects on the mechanical properties of PopG membranes using fully-atomistic reactive (ReaxFF) molecular dynamics simulations. Our results showed that PopG presents very distinct fracture mechanisms depending on the temperature and direction of the applied stretching. The main fracture dynamics trends are temperature independent and exhibit an abrupt rupture followed by fast crack propagation. The reason for this anisotropy is due to the fact that y-direction stretching leads to a deformation in the shape of the rings that cause the breaking of bonds in the pentagon-octagon and pentagon-pentagon ring connections, which is not observed for the x-direction. PopG is less stiff than graphene membranes, but the Young's modulus value is only 15 % smaller.

19.
Phys Chem Chem Phys ; 22(28): 16286-16293, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32647847

RESUMO

Since graphene was synthesized the interest in building new 2D and 3D structures based on carbon allotropes has been growing every day. One of these 3D structures is know as carbon schwarzites. Schwarzites consist of carbon nanostructures possessing the shape of Triply-Periodic Minimal Surfaces (TPMS), which is characterized by a negative Gaussian curvature introduced by the presence of carbon rings with more than six atoms. Some examples of schwarzite families include: primitive (P), gyroid (G) and diamond (D). Previous studies considering different element species of schwarzites have investigated the mechanical, electrical and thermal properties. In this work, we investigated the stability of germanium (Ge) schwarzites using density functional theory with the GGA exchange-correlation functional. We chose one structure of each family (P8bal), (G688) and (D688). It was observed that regions usually flat in carbon schwarzites acquire buckled configurations as previously observed on silicene and germanene monolayers. The investigated structures presented a semiconducting bandgap ranging from 0.13 to 0.27 eV. We also performed calculations of optical properties within the linear regime, where it was shown that Ge schwarzite structures absorb light from infrared to ultra-violet frequencies. Therefore, our results open new perspectives of materials that can be used in optoelectronics device applications.

20.
Soft Matter ; 16(25): 5854-5860, 2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32296796

RESUMO

Here we report a new class of bio-inspired solid-liquid adhesive, obtained by simple mechanical dispersion of PVDF (polyvinylidene fluoride) (solid spheres) into PDMS (polydimethylsiloxane) (liquid). The adhesive behavior arises from strong solid-liquid interactions. This is a chemical reaction free adhesive (no curing time) that can be repeatedly used and is capable of instantaneously joining a large number of diverse materials (metals, ceramic, and polymer) in air and underwater. The current work is a significant advance in the development of amphibious multifunctional adhesives and presents potential applications in a range of sealing applications, including medical ones.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...