Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 265(Pt 1): 130949, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38508545

RESUMO

This study addresses the growing interest in bio-based active food packaging by infusing Lepidium sativum (Garden cress) seeds extract (GRCE) into sodium alginate (SALG) films at varying concentrations (1, 3, and 5 %). The GRCE extract revealed six phenolic compounds, with gallic and chlorogenic acids being prominent, showcasing substantial total phenolic content (TPC) of 139.36 µg GAE/mg and total flavonoid content (TFC) of 26.46 µg RE/mg. The integration into SALG films significantly increased TPC, reaching 30.73 mg GAE/g in the film with 5 % GRCE. This enhancement extended to DPPH and ABTS activities, with notable rises to 66.47 and 70.12 %, respectively. Physical properties, including tensile strength, thickness, solubility, and moisture content, were positively affected. A reduction in water vapor permeability (WVP) was reported in the film enriched with 5 % GRCE (1.389 × 10-10 g H2O/m s p.a.). FT-IR analysis revealed bands indicating GRCE's physical interaction with the SALG matrix, with thermal stability of the films decreasing upon GRCE integration. SALG/GRCE5 effectively lowered the peroxide value (PV) of sunflower oil after four weeks at 50 °C compared to the control, with direct film-oil contact enhancing this reduction. Similar trends were observed in the K232 and K270 values.


Assuntos
Alginatos , Lepidium sativum , Alginatos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Embalagem de Alimentos/métodos , Fenóis , Extratos Vegetais/química , Estresse Oxidativo
2.
Carbohydr Polym ; 303: 120443, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36657855

RESUMO

Our current work intends to primarily engineer a new type of antibacterial composite by preparing a highly biocompatible graphene sheet decorated with TMC-CMS IPNs nanoparticles utilizing one-pot, green, cost-effective ultrasonication approach. The microstructure of as-formed materials was chemically confirmed using various analytical techniques such as 1H-NMR, FTIR, UV/vis, SEM, and TEM. TEM data has proved the formation of uniformly distributed TCNPs on graphene surfaces with a small particle size of ~22 nm compared with that of pure nanoparticles (~30 nm). The inhibitory activity of these developed materials was examined against the growth of three different M. tuberculosis pathogens and in a comparison with the isoniazid drug as a standard anti-tuberculosis drug. The TCNPs@GRP composite attained MIC values of 0.98, 3.9, and 7.81 µg/mL for inhibiting the growth of sensitive, MDR, and XDR M. tuberculosis pathogens compared to the bare TCNPs (7.81, 31.25, >125 µg/mL) and the isoniazid drug (0.24, 0, 0 µg/mL), respectively. This reveals a considerable synergism in the antituberculosis activity between TCNPs and graphene nanosheets. Cytotoxicity of the TCNPs@GRP was examined against normal lung cell lines (WI38) and was found to have cell viability of 100% with the concentration range of 0.98-7.81 µg/mL.


Assuntos
Quitosana , Grafite , Nanopartículas Metálicas , Mycobacterium tuberculosis , Nanopartículas , Estados Unidos , Grafite/química , Isoniazida/farmacologia , Centers for Medicare and Medicaid Services, U.S. , Antituberculosos/farmacologia , Nanopartículas Metálicas/química , Quitosana/química
3.
Vaccines (Basel) ; 10(6)2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35746518

RESUMO

Infections with Pseudomonas aeruginosa (PA) pose a major clinical threat worldwide especially to immunocompromised patients. As a novel vaccine network for many kinds of bacteria, bacterial ghosts (BGs) have recently been introduced. In the present research, using Sponge-Like Reduced Protocol, P. aeruginosa ghosts (PAGs) were prepared to maintain surface antigens and immunogenicity. This is the first study, to our knowledge, on the production of chemically induced well-structured bacterial ghosts for PA using concentrations of different chemicals. The research was carried out using diabetic rats who were orally immunized at two-week intervals with three doses of PAGs. Rats were subsequently challenged either by the oral route or by the model of ulcer infection with PA. In challenged rats, in addition to other immunological parameters, organ bioburden and wound healing were determined, respectively. Examination of the scanning and transmission electron microscope (EM) proved that PAGs with a proper three-dimensional structure were obtained. In contrast to control groups, oral PAGs promoted the generation of agglutinating antibodies, the development of IFN-γ, and the increase in phagocytic activity in vaccinated groups. Antibodies of the elicited PAGs were reactive to PA proteins and lipopolysaccharides. The defense against the PA challenge was observed in PAGs-immunized diabetic rats. The resulting PAGs in orally vaccinated diabetic rats were able to evoke unique humoral and cell-mediated immune responses and to defend them from the threat of skin wound infection. These results have positive implications for future studies on the PA vaccine.

4.
Int J Biol Macromol ; 191: 385-395, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34537301

RESUMO

Recently, removal of synthetic dyes, especially cationic dye of malachite green (MG), and inhibition of the growth of pathogenic microorganism from drinking water have gained much interest due to their high toxic potency for aquatic biosystems. Herein, a new dye adsorbent with outstanding antibacterial activity was fabricated based on xanthan gum (XG) and SiO2 nanoparticles through ultrasonication followed by the crosslinking polymerization with vinyl imidazole monomer. The nano adsorbents were characterized with various techniques such as FTIR, XRD, SEM, EDX, and TEM. The nanocomposites were applied as a filter for discarding MG dye and killing the growth of bacterial strains such as E.coli and S.aureus which are considered as the common impurities for drinking water. The data revealed that a maximum adsorption capacity was recorded as 99.5% (Qmax = 588.2 mg/g) at optimum conditions including 10 mg nanocomposite, 10 mL of MG dye (450 ppm), pH = 7, the temperature of 30 °C, and the adsorption time was adjusted within 6 h. The process of dye adsorption was applied to the common isotherm models of Langmuir, Temkin, and Freundlich, and the findings showed that the adsorption behavior was well fitted with the Langmuir one (R2 = 0.9983). Moreover, different adsorption kinetic models such as pseudo-first order, pseudo-second order, and intra-particle diffusion were studied for understanding the mechanism of MG adsorption onto nanocomposite surface. It was found that both intraparticle diffusion and pseudo-first-order have participated evenly in the adsorption mechanism of MG dye. Ultimately, the as-prepared nanocomposites were tested against the growth of S. aureus, and E.coli manifesting a superior inhibition diameter as 23.5 ± 0.50, and 25.33 ± 0.47 mm against E.coli, and S. aureus, respectively. Therefore, our new XG-g-PVI/SiO2 adsorbent is a very promising adsorbent for the fast and efficient capture of dyes from aqueous solutions.


Assuntos
Anti-Infecciosos/química , Corantes/química , Nanocompostos/química , Polissacarídeos Bacterianos/química , Corantes de Rosanilina/química , Dióxido de Silício/química , Adsorção , Anti-Infecciosos/farmacologia , Staphylococcus aureus/efeitos dos fármacos
5.
Mol Med Rep ; 24(3)2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34296297

RESUMO

Endoplasmic reticulum (ER) stress contributes to endothelial dysfunction, which is the initial step in atherogenesis. Blockade of protein tyrosine phosphatase (PTP)1B, a negative regulator of insulin receptors that is critically located on the surface of ER membrane, has been found to improve endothelial dysfunction. However, the role of ER stress and its related apoptotic sub­pathways in PTP1B­mediated endothelial dysfunction, particularly its angiogenic capacity, have not yet been fully elucidated. Thus, the present study aimed to investigate the impact of PTP1B suppression on ER stress­mediated impaired angiogenesis and examined the contribution of apoptotic signals in this process. Endothelial cells were exposed to pharmacological ER stressors, including thapsigargin (TG) or 1,4­dithiothreitol (DTT), in the presence or absence of a PTP1B inhibitor or small interfering (si)RNA duplexes. Then, ER stress, angiogenic capacity, cell cycle, apoptosis and the activation of key apoptotic signals were assessed. It was identified that the inhibition of PTP1B prevented ER stress caused by DTT and TG. Moreover, ER stress induction impaired the activation of endothelial nitric oxide synthase (eNOS) and the angiogenic capacity of endothelial cells, while PTP1B inhibition exerted a protective effect. The results demonstrated that blockade or knockdown of PTP1B prevented ER stress­induced apoptosis and cell cycle arrest. This effect was associated with reduced expression levels of caspase­12 and poly (ADP­Ribose) polymerase 1. PTP1B blockade also suppressed autophagy activated by TG. The current data support the critical role of PTP1B in ER stress­mediated endothelial dysfunction, characterized by reduced angiogenic capacity, with an underlying mechanism involving reduced eNOS activation and cell survival. These findings provide evidence of the therapeutic potential of targeting PTP1B in cardiovascular ischemic conditions.


Assuntos
Estresse do Retículo Endoplasmático , Células Endoteliais/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/genética , Autofagia/efeitos dos fármacos , Autofagia/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Ditiotreitol/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Óxido Nítrico Sintase Tipo III/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Tapsigargina/farmacologia , Fator de Transcrição CHOP/genética , Fator de Transcrição CHOP/metabolismo
6.
Eur J Pharmacol ; 907: 174247, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34116045

RESUMO

Endoplasmic reticulum (ER) stress is an inflammatory response that contributes to endothelial cell dysfunction, a hallmark of cardiovascular diseases, in close interplay with oxidative stress. Recently, Sestrin2 (SESN2) emerged as a novel stress-inducible protein protecting cells from oxidative stress. We investigated here, for the first time, the impact of SESN2 suppression on oxidative stress and cell survival in human endothelial cells subjected to pharmacologically (thapsigargin)-induced ER stress and studied the underlying cellular pathways. We found that SESN2 silencing, though did not specifically induce ER stress, it aggravated the effects of thapsigargin-induced ER stress on oxidative stress and cell survival. This was associated with a dysregulation of Nrf-2, AMPK and mTORC1 signaling pathways. Furthermore, SESN2 silencing aggravated, in an additive manner, apoptosis caused by thapsigargin. Importantly, SESN2 silencing, unlike thapsigargin, caused a dramatic decrease in protein expression and phosphorylation of Akt, a critical pro-survival hub and component of the AMPK/Akt/mTORC1 axis. Our findings suggest that patients with conditions characterized by ER stress activation, such as diabetes, may be at higher risk for cardiovascular complications if their endogenous ability to stimulate and/or maintain expression levels of SESN2 is disturbed or impaired. Therefore, identifying novel or repurposing existing pharmacotherapies to enhance and/or maintain SESN2 expression levels would be beneficial in these conditions.


Assuntos
Estresse do Retículo Endoplasmático , Proteínas Quinases Ativadas por AMP , Animais , Células Endoteliais , Alvo Mecanístico do Complexo 1 de Rapamicina , Transdução de Sinais
7.
Int J Biol Macromol ; 182: 680-688, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33838196

RESUMO

A green and scalable approach for the preparation of few-layered graphene utilizing the biowaste of potato peels has been developed. The potato peels have been dried and carbonized to obtain a new graphite structure that has been exfoliated in N-methylene phosphonic acid chitosan (MPC). The exfoliation process assisted the formation of graphene sheets with a high size diameter and quality of 50% based on the weight of graphite structure. The graphene sheets were green decorated with silver nanoparticles using microwave power to obtain new nanocomposites. The mass ratio between the graphite and silver nitrate was optimized and observed to change the morphology and size diameter of silver nanoparticles. The as-prepared MPC structure, graphene, and silver decorated graphene nanocomposites were characterized using 1HNMR, FTIR, XRD, UV/Vis spectrophotometer, SEM, and TEM besides tested as antimicrobial agents. The bacterial performance was also controlled by changing the number of AgNPs distributed on graphene sheets based on the mass ratios of graphite/AgNO3. The inhibition diameter of silver decorated graphene was considerably increased to 24.8, and 20.1 mm as in the case of MPC-GRP-Ag30 composite compared to the pure graphene (11.2, 13.5 mm) for E. coli and S. aureus, consecutively proposing that the blade edge of graphene sheets can destroy the bacteria membrane and release silver cations promptly that are directed for the interaction with the cytoplasmic parts of the bacteria cell. Such findings offer green and biocompatible antibacterial agents based on the graphene derived from the biowaste products.


Assuntos
Anti-Infecciosos/síntese química , Quitosana/análogos & derivados , Grafite/química , Nanopartículas Metálicas/química , Ácidos Fosforosos/química , Anti-Infecciosos/farmacologia , Química Verde/métodos , Prata/química , Staphylococcus aureus/efeitos dos fármacos
8.
Int J Biol Macromol ; 167: 1113-1125, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33197479

RESUMO

Herein, we reported the preparation of novel antibacterial nanocomposites based on biodegradable polymers. The nanocomposites were applied as capable adsorbent for removing of malachite green (MG) dye, as well as inhibiting of E. coli and S. aureus growth as the most common pollutants for water. The grafted xanthan gum with poly(vinylimidazole) (XG-g-PVI) nanocomposites were synthesized in the presence of different Montmorillonite (MMT) nanoclays concentrations (1%, 3% and 5%). The prepared modified XG nanocomposites were detected through XRD, SEM-EDX, FTIR and TEM. The maximum adsorption MG capacity was determined as 99.99% (909.1 mg/g) in basic medium at 30 °C for 90 min. The adsorption isotherm for removal of MG dye was studied against different models like Langmuir, Freundlich, Temkin, FloryHuggins isotherm models, however, the adsorption results were good fitted with Langmuir isotherm model (R2 = 0.9942). Additionally, various adsorption kinetic models: pseudo-first order, second order, pseudo-second order, and intra-particle diffusion models were studied for adsorption mechanism of MG dye on top of prepared nanocomposite surface. Finally, the antibacterial activity outcomes displayed that the prepared XG-g-PVI/MMT nanocomposites had excellent inhibition growth for bacteria and the antibacterial activity increased abruptly with the increased of MMT nanoclay concentrations.


Assuntos
Antibacterianos/química , Bentonita/química , Nanocompostos/química , Polissacarídeos Bacterianos/química , Águas Residuárias/química , Poluentes Químicos da Água/química , Adsorção , Antibacterianos/análise , Técnicas de Química Sintética , Concentração de Íons de Hidrogênio , Cinética , Testes de Sensibilidade Microbiana , Nanocompostos/ultraestrutura , Espectroscopia de Infravermelho com Transformada de Fourier , Fatores de Tempo , Purificação da Água/métodos , Difração de Raios X
9.
Front Cardiovasc Med ; 7: 584791, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33363219

RESUMO

Circulating extracellular vesicles (EVs) are recognized as biomarkers and effectors of endothelial dysfunction, the initiating step of cardiovascular abnormalities. Among these EVs, microparticles (MPs) are vesicles directly released from the cytoplasmic membrane of activated cells. MPs were shown to induce endothelial dysfunction through the activation of endoplasmic reticulum (ER) stress. However, it is not known whether ER stress can lead to MPs release from endothelial cells and what biological messages are carried by these MPs. Therefore, we aimed to assess the impact of ER stress on MPs shedding from endothelial cells, and to investigate their effects on endothelial cell function. EA.hy926 endothelial cells or human umbilical vein endothelial cells (HUVECs) were treated for 24 h with ER stress inducers, thapsigargin or dithiothreitol (DTT), in the presence or absence of 4-Phenylbutyric acid (PBA), a chemical chaperone to inhibit ER stress. Then, MPs were isolated and used to treat cells (10-20 µg/mL) for 24-48 h before assessing ER stress response, angiogenic capacity, nitric oxide (NO) release, autophagy and apoptosis. ER stress (thapsigargin or DDT)-generated MPs did not differ quantitatively from controls; however, they carried deleterious messages for endothelial function. Exposure of endothelial cells to ER stress-generated MPs increased mRNA and protein expression of key ER stress markers, indicating a vicious circle activation of ER stress. ER stress (thapsigargin)-generated MPs impaired the angiogenic capacity of HUVECs and reduced NO release, indicating an impaired endothelial function. While ER stress (thapsigargin)-generated MPs altered the release of inflammatory cytokines, they did not, however, affect autophagy or apoptosis in HUVECs. This work enhances the general understanding of the deleterious effects carried out by MPs in medical conditions where ER stress is sustainably activated such as diabetes and metabolic syndrome.

10.
Clin Appl Thromb Hemost ; 26: 1076029620940050, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32729323

RESUMO

Immune thrombocytopenia (ITP) is an autoimmune disease characterized by low platelet count and increased bleeding risk. The initial event(s) leading to antiplatelet autoimmunity remains unclear. Toll-like receptors (TLRs) are the most well-characterized pattern recognition receptors and are a transmembrane protein coded by the Toll genes family. In addition to their protective role in immunity, it is also becoming clear that TLRs exhibit homeostatic roles. Toll-like receptors play potential roles in the development of disease and its maintenance. The objective of this study is to evaluate the distribution of TLR9 gene C/T (rs352140) polymorphisms and its possible association with clinicopathological finding in Egyptian adult primary ITP. This study was carried out at Internal Medicine Department, Menoufia University Hospital, Egypt, from August 2018 to January 2020. Eighty adults (≥ 18 years) were enrolled in the study; 40 patients with primary ITP and 40 healthy individuals as controls. Identification of the TLR9 C/T (rs352140) polymorphic variant was performed by polymerase chain reaction-restriction fragment length polymorphism. In our study, we excluded any other causes of secondary ITP. Distribution of the TLR9 C/T genotypes did not exhibit significant deviation between patients and controls. There was no significant difference between studied groups as regards allele (C and T) frequency. There was no significant difference regarding TLR9 gene C/T (rs352140) polymorphisms between Egyptian adult with primary ITP and controls. TLR9 gene C/T (rs352140) polymorphisms have no relation to any of the clinicohematological variables in primary ITP in Egyptians.


Assuntos
Púrpura Trombocitopênica Idiopática/genética , Receptor Toll-Like 9/genética , Adulto , Estudos Transversais , Feminino , Predisposição Genética para Doença , Genótipo , Humanos , Masculino , Polimorfismo de Nucleotídeo Único
11.
Onco Targets Ther ; 13: 13357-13370, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33414642

RESUMO

INTRODUCTION: Venetoclax (VCX) is a selective BCL-2 inhibitor approved for the treatment of leukemia and lymphoma. However, the mechanisms of anti-cancer effect of VCX either as a monotherapy or in combination with other chemotherapeutic agents against breast cancer need investigation. METHODS: Breast cancer cell lines with different molecular subtypes (MDA-MB-231, MCF-7, and SKBR-3) were treated with different concentrations of VCX for indicated time points. The expression of cell proliferative, apoptotic, and autophagy genes was determined by qRT-PCR and Western blot analyses. In addition, the percentage of MDA-MB-231 cells underwent apoptosis, expressed higher oxidative stress levels, and the changes in the cell cycle phases were determined by flow cytometry. RESULTS: Treatment of human breast cancer cells with increasing concentrations of VCX caused a significant decrease in cells growth and proliferation. This effect was associated with a significant increase in the percentage of apoptotic MDA-MB-231 cells and in the expression of the apoptotic genes, caspase 3, caspase 7, and BAX, with inhibition of anti-apoptotic gene, BCL-2 levels. Induction of apoptosis by VCX treatment induced cell cycle arrest at G0/G1 phase with inhibition of cell proliferator genes, cyclin D1 and E2F1. Furthermore, VCX treatment increased the formation of reactive oxygen species and the expression level of autophagy markers, Beclin 1 and LC3-II. Importantly, these cellular changes by VCX increased the chemo-sensitivity of MDA-MB-231 cells to doxorubicin. DISCUSSION: The present study explores the molecular mechanisms of VCX-mediated inhibitory effects on the growth and proliferation of TNBC MDA-MB-231 cells through the induction of apoptosis, cell cycle arrest, and autophagy. The study also explores the role of BCL-2 as a novel targeted therapy for breast cancer.

12.
Crit Rev Anal Chem ; 50(2): 161-178, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31001988

RESUMO

Determination of sulfur and deleterious trace elements in crude oil has long been an area of active investigation and still attracting interest due to their undesirable economic consequences and adverse environmental impacts. Therefore, analytical methods devoted to their sensitive, rapid, and accurate determination are of paramount importance in various areas of oil refining and petrochemical industry. In the present review, occurrence and implications of the main metallic constituents in crude oil are summarized. Furthermore, currently available methodological approaches including sample pretreatment procedures along with the most commonly used measurement techniques employed for crude oil analysis are overviewed. A summary of the applications and recent developments over the past years is discussed. The basic principle, pros and cons of each analytical method are highlighted. The overview is based on 172 references.


Assuntos
Petróleo/análise , Enxofre/análise , Oligoelementos/análise , Análise Espectral
13.
Biomed Res Int ; 2019: 9406241, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31534968

RESUMO

[This corrects the article DOI: 10.1155/2017/5903105.].

14.
J Cell Physiol ; 234(10): 16739-16754, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30912147

RESUMO

Stroke is one of the leading causes of mortality and disability worldwide. Numerous pathophysiological mechanisms involving blood vessels, coagulation and inflammation contribute to the vascular occlusion. Perturbations in these pathways can be detected by numerous methods including changes in endoplasmic membrane remodeling and rearrangement leading to the shedding of microparticles (MPs) from various cellular origins in the blood. MPs are small membrane-derived vesicles that are shed from nearly all cells in the body in resting state or upon stimulation. MPs act as biological messengers to transfer information to adjacent and distant cells thus regulating various biological processes. MPs may be important biomarkers and tools for the identification of the risk and diagnosis of cerebrovascular diseases. Endothelial activation and dysfunction and altered thrombotic responses are two of the main features predisposing to stroke. Endothelial MPs (EMPs) have been recognized as both biomarkers and effectors of endothelial cell activation and injury while platelet-derived MPs (PMPs) carry a strong procoagulant potential and are activated in thrombotic states. Therefore, we reviewed here the role of EMPs and PMPs as biomarkers of stroke. Most studies reported high circulating levels of EMPs and PMPs in addition to other cell origins in stroke patients and have been linked to stroke severity, the size of infarction, and prognosis. The identification and quantification of EMPs and PMPs may thus be useful for the diagnosis and management of stroke.


Assuntos
Plaquetas , Micropartículas Derivadas de Células , Acidente Vascular Cerebral/sangue , Biomarcadores/sangue , Humanos , Acidente Vascular Cerebral/diagnóstico
15.
Breast Cancer Res Treat ; 172(3): 545-550, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30218194

RESUMO

PURPOSE: The theme of the 15th St. Gallen International Breast Cancer Conference 2017 in Vienna, Austria was about seeking where appropriate to escalate or de-escalate therapies for early breast cancer based on the up-to-date information of loco-regional and systemic therapies. Along with this line, a group of Egyptian experts decided to arrange for a consensus session to elicit the differences and similarities in therapy recommendations for early breast cancer in Egypt compared to the original Saint Gallen voting and recommendations. METHODS: During the Egyptian National Cancer Institute's Annual Congress held in November 2017, 30 Egyptian scientists and clinicians from different specialties gathered in a special session and voted on the same questions of the original 15th St. Gallen consensus. Therapies were discussed from different aspects including their intensity, duration, and side effects, and were correlated with tumor stage and tumor biology. RESULTS AND CONCLUSIONS: This report summarizes the voting questions and resulting percentages of answers of the Egyptian scientists. Interestingly the differences were minimal between the Cairo and original Saint Gallen Consensus denoting a more global view of breast cancer management all over the world.


Assuntos
Neoplasias da Mama/patologia , Neoplasias da Mama/terapia , Neoplasias da Mama/etiologia , Terapia Combinada , Gerenciamento Clínico , Egito , Feminino , Humanos , Estadiamento de Neoplasias
16.
Biomed Res Int ; 2017: 5903105, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28386557

RESUMO

Diabetic nephropathy (DN) is the leading cause of end stage renal disease worldwide. Increased glucose flux into the aldose reductase (AR) pathway during diabetes was reported to exert deleterious effects on the kidney. The objective of this study was to investigate the renoprotective effects of AR inhibition in high glucose milieu in vitro. Rat renal tubular (NRK-52E) cells were exposed to high glucose (30 mM) or normal glucose (5 mM) media for 24 to 48 hours with or without the AR inhibitor epalrestat (1 µM) and assessed for changes in Akt and ERK1/2 signaling, AR expression (using western blotting), and alterations in mitochondrial membrane potential (using JC-1 staining), cell viability (using MTT assay), and cell cycle. Exposure of NRK-52E cells to high glucose media caused acute activation of Akt and ERK pathways and depolarization of mitochondrial membrane at 24 hours. Prolonged high glucose exposure (for 48 hours) induced AR expression and G1 cell cycle arrest and decreased cell viability (84% compared to control) in NRK-52E cells. Coincubation of cells with epalrestat prevented the signaling changes and renal cell injury induced by high glucose. Thus, AR inhibition represents a potential therapeutic strategy to prevent DN.


Assuntos
Aldeído Redutase/antagonistas & inibidores , Diabetes Mellitus Experimental/tratamento farmacológico , Nefropatias Diabéticas/tratamento farmacológico , Rodanina/análogos & derivados , Tiazolidinas/administração & dosagem , Aldeído Redutase/metabolismo , Animais , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Inibidores Enzimáticos/administração & dosagem , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Glucose/administração & dosagem , Glucose/metabolismo , Humanos , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/enzimologia , Túbulos Renais Proximais/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/biossíntese , Ratos , Rodanina/administração & dosagem
17.
J Vasc Interv Neurol ; 4(1): 5-9, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22518260

RESUMO

BACKGROUND: Atherosclerotic aortic arch plaques (AAP) have been linked to an increased risk of thrombo-embolic events as a cause of acute ischemic stroke of undetermined etiology. OBJECTIVES: To find out the presence of atherosclerotic plaques in aortic arch and their potential role as a source of embolism in cerebral infarction of undetermined etiology. METHODS: We performed trans-esophageal echocardiography (TEE) and multislice computerized tomography (MSCT) of the aortic arch on 30 patients with acute ischemic stroke of undetermined cause from a total series of 150 non-selected patients with acute ischemic stroke studied prospectively by clinical evaluation, laboratory investigations, cranial computed tomography, color coded duplex ultrasonography of the carotid arteries and transcranial Doppler (TCD). RESULTS: Using trans-esophageal echocardiography eight patients (29.6%) had atherosclerotic aortic arch plaques, while using multislice computerized tomography atherosclerotic aortic arch plaques were revealed in twelve patients (40%). Atherosclerotic aortic arch plaques were significantly related to older age, male gender, hypertension, ischemic heart disease and low-grade atherosclerotic carotid lesions. Multislice computerized tomography of the aortic arch was more sensitive than trans-esophageal echocardiography in detecting the site, size and characters of atherosclerotic aortic arch plaques. CONCLUSION: Atherosclerotic aortic arch plaques are a frequent finding in patients with acute ischemic stroke of undetermined cause supporting the hypothesis that aortic plaques have embolic potential. In addition, multislice computerized tomography is more sensitive than trans-esophageal echocardiography in detecting atherosclerotic aortic arch plaques and better characterization of these plaques especially relevant one.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...