Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Phylogenet Evol ; 63(2): 510-20, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22361214

RESUMO

The evolution of spermatophyte plants involved fundamental changes in cell wall structure and function which resulted from diversification of carbohydrates and proteins. Cell wall proteomic analyses identified a novel family of proteins of yet unknown function, the DUF642 (Domain of Unknown Function 642) proteins. To investigate the evolution of the DUF642 gene family, 154 gene sequences from 24 plant species were analyzed, and phylogenetic inferences were conducted using the Maximum Likelihood and Bayesian Inference methods. Orthologous genes were detected in spermatophyte species and absent in non-seed known plant genomes. Protein sequences shared conserved motifs that defined the signature of the family. Distribution of conserved motifs indicated an ancestral intragenic duplication event. Gene phylogeny documented paleoduplication events originating three or four clades, depending on root position. When based on mid-point rooting, it retrieved four monophyletic clades: A, B, C, and D. A glycosylphosphatidylinositol (GPI)-anchor site and one or two galactose-binding domains-like (GBDLs) could be predicted for some DUF642 proteins. The B, C, and D clades grouped the predicted GPI-anchored proteins. First evidence of in vitro interaction of a DUF642 protein with a cell wall polysaccharide fraction is provided. A competition assay with cellulose prevented this interaction. The degree of diversification and the conservation of the family suggested that DUF642 proteins are key components in seed plant evolution.


Assuntos
Parede Celular/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Filogenia , Plantas/classificação , Plantas/genética , Sequência de Aminoácidos , Evolução Molecular , Genes de Plantas , Genoma de Planta , Dados de Sequência Molecular , Células Vegetais/metabolismo , Proteínas de Plantas/genética , Proteômica , Alinhamento de Sequência , Análise de Sequência de Proteína , Transdução de Sinais
2.
Ann Bot ; 107(6): 939-51, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21385781

RESUMO

BACKGROUND AND AIMS: The size and composition of seed reserves may reflect the ecological strategy and evolutionary history of a species and also temporal variation in resource availability. The seed mass and composition of seed reserves of 19 co-existing tree species were studied, and we examined how they varied among species in relation to germination and seedling growth rates, as well as between two years with contrasting precipitation (652 and 384 mm). METHODS: Seeds were collected from a tropical deciduous forest in the northwest of Mexico (Chamela Biological Station). The seed dry mass, with and without the seed coat, and the concentrations of lipids, nitrogen and non-structural carbohydrates for the seed minus seed coat were determined. The anatomical localization of these reserves was examined using histochemical analysis. The germination capacity, rate and lag time were determined. The correlations among these variables, and their relationship to previously reported seedling relative growth rates, were evaluated with and without phylogenetic consideration. KEY RESULTS: There were interannual differences in seed mass and reserve composition. Seed was significantly heavier after the drier year in five species. Nitrogen concentration was positively correlated with seed coat fraction, and was significantly higher after the drier year in 12 species. The rate and lag time of germination were negatively correlated with each other. These trait correlations were also supported for phylogenetic independent contrasts. Principal component analysis supported these correlations, and indicated a negative association of seedling relative growth rate with seed size, and a positive association of germination rate with nitrogen and lipid concentrations. CONCLUSIONS: Nitrogen concentration tended to be higher after the drier year and, while interannual variations in seed size and reserve composition were not sufficient to affect interspecific correlations among seed and seedling traits, some of the reserves were related to germination variables and seedling relative growth rate.


Assuntos
Germinação , Plântula/crescimento & desenvolvimento , Sementes/fisiologia , Filogenia , Reprodução , Sementes/anatomia & histologia , Especificidade da Espécie , Árvores/anatomia & histologia , Árvores/classificação , Árvores/fisiologia , Clima Tropical
3.
Arabidopsis Book ; 8: e0127, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-22303253

RESUMO

Flowers are the most complex structures of plants. Studies of Arabidopsis thaliana, which has typical eudicot flowers, have been fundamental in advancing the structural and molecular understanding of flower development. The main processes and stages of Arabidopsis flower development are summarized to provide a framework in which to interpret the detailed molecular genetic studies of genes assigned functions during flower development and is extended to recent genomics studies uncovering the key regulatory modules involved. Computational models have been used to study the concerted action and dynamics of the gene regulatory module that underlies patterning of the Arabidopsis inflorescence meristem and specification of the primordial cell types during early stages of flower development. This includes the gene combinations that specify sepal, petal, stamen and carpel identity, and genes that interact with them. As a dynamic gene regulatory network this module has been shown to converge to stable multigenic profiles that depend upon the overall network topology and are thus robust, which can explain the canalization of flower organ determination and the overall conservation of the basic flower plan among eudicots. Comparative and evolutionary approaches derived from Arabidopsis studies pave the way to studying the molecular basis of diverse floral morphologies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...