Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
2.
J Transl Med ; 22(1): 301, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521955

RESUMO

BACKGROUND: Due to their complexity and to the presence of common clinical features, differentiation between asthma and chronic obstructive pulmonary disease (COPD) can be a challenging task, complicated in such cases also by asthma-COPD overlap syndrome. The distinct immune/inflammatory and structural substrates of COPD and asthma are responsible for significant differences in the responses to standard pharmacologic treatments. Therefore, an accurate diagnosis is of central relevance to assure the appropriate therapeutic intervention in order to achieve safe and effective patient care. Induced sputum (IS) accurately mirrors inflammation in the airways, providing a more direct picture of lung cell metabolism in comparison to those specimen that reflect analytes in the systemic circulation. METHODS: An integrated untargeted metabolomics and lipidomics analysis was performed in IS of asthmatic (n = 15) and COPD (n = 22) patients based on Ultra-High-Pressure Liquid Chromatography-Mass Spectrometry (UHPLC-MS) and UHPLC-tandem MS (UHPLC-MS/MS). Partial Least Squares-Discriminant Analysis (PLS-DA) was applied to resulting dataset. The analysis of main enriched metabolic pathways and the association of the preliminary metabolites/lipids pattern identified to clinical parameters of asthma/COPD differentiation were explored. Multivariate ROC analysis was performed in order to determine the discriminatory power and the reliability of the putative biomarkers for diagnosis between COPD and asthma. RESULTS: PLS-DA indicated a clear separation between COPD and asthmatic patients. Among the 15 selected candidate biomarkers based on Variable Importance in Projection scores, putrescine showed the highest score. A differential IS bio-signature of 22 metabolites and lipids was found, which showed statistically significant variations between asthma and COPD. Of these 22 compounds, 18 were decreased and 4 increased in COPD compared to asthmatic patients. The IS levels of Phosphatidylethanolamine (PE) (34:1), Phosphatidylglycerol (PG) (18:1;18:2) and spermine were significantly higher in asthmatic subjects compared to COPD. CONCLUSIONS: This is the first pilot study to analyse the IS metabolomics/lipidomics signatures relevant in discriminating asthma vs COPD. The role of polyamines, of 6-Hydroxykynurenic acid and of D-rhamnose as well as of other important players related to the alteration of glycerophospholipid, aminoacid/biotin and energy metabolism provided the construction of a diagnostic model that, if validated on a larger prospective cohort, might be used to rapidly and accurately discriminate asthma from COPD.


Assuntos
Asma , Doença Pulmonar Obstrutiva Crônica , Humanos , Lipidômica , Espectrometria de Massas em Tandem/métodos , Escarro/metabolismo , Diagnóstico Diferencial , Reprodutibilidade dos Testes , Projetos Piloto , Estudos Prospectivos , Asma/diagnóstico , Asma/metabolismo , Biomarcadores , Metabolômica/métodos , Lipídeos
3.
J Thromb Haemost ; 22(4): 1154-1166, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38072374

RESUMO

BACKGROUND: Platelet (PLT) product transfusion is a life-saving therapy for actively bleeding patients. There is an urgent need to maintain PLT function and extend shelf life to improve outcomes in these patients. Cold-stored PLT (CS-PLT) maintain hemostatic potential better than room temperature-stored PLT (RT-PLT). However, whether function in long-term CS-PLT is maintained under physiological flow regimes and/or determined by cold-induced metabolic changes is unknown. OBJECTIVES: This study aimed to (i) compare the function of RT-PLT and CS-PLT under physiological flow conditions, (ii) determine whether CS-PLT maintain function after 3 weeks of storage, and (iii) identify metabolic pathways associated with the CS-PLT lesion. METHODS: We performed phenotypic and functional assessments of RT- and CS-PLT (22 °C and 4 °C storage, respectively; N = 10 unique donors) at storage days 0, 5, and/or 21 via metabolomics, flow cytometry, aggregation, thrombin generation, viscoelastic testing, and a microfluidic assay to measure primary hemostatic function. RESULTS: Day 21 4 °C PLT formed an occlusive thrombus under arterial shear at a similar rate to day 5 22 °C PLT. Day 21 4 °C PLTs had enhanced thrombin generation capacity compared with day 0 PLT and maintained functionality comparable to day RT-PLT across all assays performed. Key metrics from microfluidic assessment, flow cytometry, thrombin generation, and aggregation were associated with 4 °C storage, and metabolites involved in taurine and purine metabolism significantly correlated with these metrics. Taurine supplementation of PLT during storage improved hemostatic function under flow. CONCLUSION: CS-PLT stored for 3 weeks maintain hemostatic activity, and storage-induced phenotype and function are associated with taurine and purine metabolism.


Assuntos
Hemostáticos , Humanos , Trombina/metabolismo , Preservação de Sangue , Plaquetas/metabolismo , Purinas/metabolismo
4.
Front Pharmacol ; 14: 1275832, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37829298

RESUMO

Male infertility occurs approximately in about 50% of all infertility cases and represents a serious concern worldwide. Traditional semen analysis alone is insufficient to diagnose male infertility. Over the past two decades, advances in omics technologies have led to the widespread application of metabolomics profiling as a valuable diagnostic tool for various diseases and disorders. Seminal plasma represents a rich and easily accessible source of metabolites surrounding spermatozoa, a milieu that provides several indispensable nutrients to sustain sperm motility and fertilization. Changes of metabolic profiles in seminal plasma reflect male reproductive tract disorders. Here, we performed seminal plasma metabolomics and lipidomics profiling to identify a new pattern of biomarkers of male infertility. Seminal plasma samples from unfertile subjects (n = 31) and fertile controls (n = 19) were analyzed using an untargeted metabolomics/lipidomics integrated approach, based on Ultra-High-Pressure Liquid Chromatography-tandem Mass Spectrometry. Partial Least Squares-Discriminant Analysis showed a distinct separation between healthy fertile men and infertile subjects. Among the 15 selected candidate biomarkers based on Variable Importance in Projection scores, phosphatidylethanolamine (PE) (18:1; 18:1) resulted with the highest score. In total, 40 molecular species showed statistically significant variations between fertile and infertile men. Heat-map and volcano plot analysis indicated that acylcarnitines, phosphatidylserine (PS) (40:2) and lactate were decreased, while PE (18:1; 18:1), Phosphatidic acid (PA) (O-19:2; 18:1), Lysophosphatidylethanolamine (LPE) (O-16:1) and Phosphatidylcholine (PC) (O-16:2; 18:1)-CH3 were increased in the infertile group. The present study is the first one to analyze the metabolomics/lipidomics dysregulation in seminal plasma between fertile and infertile individuals regardless of sub-infertility condition. Association of several metabolites/lipids dysregulation with male infertility reinforced data of previous studies performed with different approaches. In particular, we confirmed significantly decreased levels of PS and carnitines in infertile patients as well as the positive correlation with sperm motility and morphology. If validated on a larger prospective cohort, the metabolite biomarkers of infertility in seminal plasma we identified in the present study might inform novel strategies for diagnosis and interventions to overcome male infertility.

5.
Antioxidants (Basel) ; 12(9)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37760001

RESUMO

Lesch-Nyhan syndrome (LN) is an is an X-linked recessive inborn error of metabolism that arises from a deficiency of purine salvage enzyme hypoxanthine-guanine phosphoribosyltransferase (HPRT). The disease manifests severely, causing intellectual deficits and other neural abnormalities, hypercoagulability, uncontrolled self-injury, and gout. While allopurinol is used to alleviate gout, other symptoms are less understood, impeding treatment. Herein, we present a high-throughput multi-omics analysis of red blood cells (RBCs) from three pediatric siblings carrying a novel S162N HPRT1 mutation. RBCs from both parents-the mother, a heterozygous carrier, and the father, a clinically healthy control-were also analyzed. Global metabolite analysis of LN RBCs shows accumulation of glycolytic intermediates upstream of pyruvate kinase, unsaturated fatty acids, and long chain acylcarnitines. Similarly, highly unsaturated phosphatidylcholines are also elevated in LN RBCs, while free choline is decreased. Intracellular iron, zinc, selenium, and potassium are also decreased in LN RBCs. Global proteomics documented changes in RBC membrane proteins, hemoglobin, redox homeostasis proteins, and the enrichment of coagulation proteins. These changes were accompanied by elevation in protein glutamine deamidation and methylation in the LN children and carrier mother. Treatment with allopurinol incompletely reversed the observed phenotypes in the two older siblings currently on this treatment. This unique data set provides novel opportunities for investigations aimed at potential therapies for LN-associated sequelae.

6.
J Proteome Res ; 22(9): 2925-2935, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37606205

RESUMO

Sickle cell disease and ß-thalassemia represent hemoglobinopathies arising from dysfunctional or underproduced ß-globin chains, respectively. In both diseases, red blood cell injury and anemia are the impetus for end organ injury. Because persistent erythrophagocytosis is a hallmark of these genetic maladies, it is critical to understand how macrophage phenotype polarizations in tissue compartments can inform on disease progression. Murine models of sickle cell disease and ß-thalassemia allow for a basic understanding of the mechanisms and provide for translation to human disease. A multi-omics approach to understanding the macrophage metabolism and protein changes in two murine models of ß-globinopathy was performed on peripheral blood mononuclear cells as well as spleen and liver macrophages isolated from Berkley sickle cell disease (Berk-ss) and heterozygous B1/B2 globin gene deletion (Hbbth3/+) mice. The results from these experiments revealed that the metabolome and proteome of macrophages are polarized to a distinct phenotype in Berk-ss and Hbbth3/+ compared with each other and their common-background mice (C57BL6/J). Further, spleen and liver macrophages revealed distinct disease-specific phenotypes, suggesting that macrophages become differentially polarized and reprogrammed within tissue compartments. We conclude that tissue recruitment, polarization, and metabolic and proteomic reprogramming of macrophages in Berk-ss and Hbbth3/+ mice may be relevant to disease progression in other tissue.


Assuntos
Anemia Falciforme , Talassemia beta , Humanos , Animais , Camundongos , Monócitos , Talassemia beta/genética , Leucócitos Mononucleares , Proteômica , Anemia Falciforme/genética , Macrófagos , Progressão da Doença
7.
J Trauma Acute Care Surg ; 95(6): 925-934, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37405823

RESUMO

BACKGROUND: The coagulopathy of traumatic brain injury (TBI) remains poorly understood. Contradictory descriptions highlight the distinction between systemic and local coagulation, with descriptions of systemic hypercoagulability despite intracranial hypocoagulopathy. This perplexing coagulation profile has been hypothesized to be due to tissue factor release. The objective of this study was to assess the coagulation profile of TBI patients undergoing neurosurgical procedures. We hypothesize that dura violation is associated with higher tissue factor and conversion to a hypercoagulable profile and unique metabolomic and proteomic phenotype. METHODS: This is a prospective, observational cohort study of all adult TBI patients at an urban, Level I trauma center who underwent a neurosurgical procedure from 2019 to 2021. Whole blood samples were collected before and then 1 hour following dura violation. Citrated rapid and tissue plasminogen activator (tPA) thrombelastography (TEG) were performed, in addition to measurement of tissue factory activity, metabolomics, and proteomics. RESULTS: Overall, 57 patients were included. The majority (61%) were male, the median age was 52 years, 70% presented after blunt trauma, and the median Glasgow Coma Score was 7. Compared with pre-dura violation, post-dura violation blood demonstrated systemic hypercoagulability, with a significant increase in clot strength (maximum amplitude of 74.4 mm vs. 63.5 mm; p < 0.0001) and a significant decrease in fibrinolysis (LY30 on tPAchallenged TEG of 1.4% vs. 2.6%; p = 0.04). There were no statistically significant differences in tissue factor. Metabolomics revealed notable increases in metabolites involved in late glycolysis, cysteine, and one-carbon metabolites, and metabolites involved in endothelial dysfunction/arginine metabolism/responses to hypoxia. Proteomics revealed notable increase in proteins related to platelet activation and fibrinolysis inhibition. CONCLUSION: A systemic hypercoagulability is observed in TBI patients, characterized by increased clot strength and decreased fibrinolysis and a unique metabolomic and proteomics phenotype independent of tissue factor levels.


Assuntos
Transtornos da Coagulação Sanguínea , Lesões Encefálicas Traumáticas , Trombofilia , Adulto , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Ativador de Plasminogênio Tecidual , Estudos de Coortes , Proteômica , Tromboplastina , Trombofilia/diagnóstico , Trombofilia/etiologia , Transtornos da Coagulação Sanguínea/diagnóstico , Transtornos da Coagulação Sanguínea/etiologia , Lesões Encefálicas Traumáticas/complicações , Tromboelastografia/métodos
8.
Haematologica ; 108(12): 3418-3432, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37439373

RESUMO

Metabolomics studies in sickle cell disease (SCD) have been so far limited to tens of samples, owing to technical and experimental limitations. To overcome these limitations, we performed plasma metabolomics analyses on 596 samples from patients with SCD enrolled in the WALK-PHaSST study (clinicaltrials gov. Identifier: NCT00492531). Clinical covariates informed the biological interpretation of metabolomics data, including genotypes (hemoglobin [Hb] SS, hemoglobin SC), history of recent transfusion (HbA%), response to hydroxyurea treatment (fetal Hb%). We investigated metabolic correlates to the degree of intravascular hemolysis, cardiorenal function, as determined by tricuspid regurgitation velocity (TRV), estimated glomerular filtration rate (eGFR), and overall hazard ratio (unadjusted or adjusted by age). Recent transfusion events or hydroxyurea treatment were associated with elevation in plasma-free fatty acids and decreases in acyl-carnitines, urate, kynurenine, indoles, carboxylic acids, and glycine- or taurine-conjugated bile acids. High levels of these metabolites, along with low levels of plasma S1P and L-arginine were identified as top markers of hemolysis, cardiorenal function (TRV, eGFR), and overall hazard ratio. We thus uploaded all omics and clinical data on a novel online portal that we used to identify a potential mechanism of dysregulated red cell S1P synthesis and export as a contributor to the more severe clinical manifestations in patients with the SS genotype compared to SC. In conclusion, plasma metabolic signatures - including low S1P, arginine and elevated kynurenine, acyl-carnitines and bile acids - are associated with clinical manifestation and therapeutic efficacy in SCD patients, suggesting new avenues for metabolic interventions in this patient population.


Assuntos
Anemia Falciforme , Doença da Hemoglobina SC , Humanos , Hidroxiureia/uso terapêutico , Cinurenina/uso terapêutico , Anemia Falciforme/complicações , Anemia Falciforme/tratamento farmacológico , Doença da Hemoglobina SC/complicações , Hemólise , Hemoglobina Falciforme , Ácidos e Sais Biliares/uso terapêutico
9.
bioRxiv ; 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37066337

RESUMO

Metabolomics studies in sickle cell disease (SCD) have been so far limited to tens of samples, owing to technical and experimental limitations. To overcome these limitations, we performed plasma metabolomics analyses on 596 samples from patients with sickle cell sickle cell disease (SCD) enrolled in the WALK-PHaSST study. Clinical covariates informed the biological interpretation of metabolomics data, including genotypes (hemoglobin SS, hemoglobin SC), history of recent transfusion (HbA%), response to hydroxyurea treatment (HbF%). We investigated metabolic correlates to the degree of hemolysis, cardiorenal function, as determined by tricuspid regurgitation velocity (TRV), estimated glomerular filtration rate (eGFR), and overall hazard ratio (unadjusted or adjusted by age). Recent transfusion events or hydroxyurea treatment were associated with elevation in plasma free fatty acids and decreases in acyl-carnitines, urate, kynurenine, indoles, carboxylic acids, and glycine- or taurine-conjugated bile acids. High levels of these metabolites, along with low levels of plasma S1P and L-arginine were identified as top markers of hemolysis, cardiorenal function (TRV, eGFR), and overall hazard ratio. We thus uploaded all omics and clinical data on a novel online portal that we used to identify a potential mechanism of dysregulated red cell S1P synthesis and export as a contributor to the more severe clinical manifestations in patients with the SS genotype compared to SC. In conclusion, plasma metabolic signatures - including low S1P, arginine and elevated kynurenine, acyl-carnitines and bile acids - are associated with clinical manifestation and therapeutic efficacy in SCD patients, suggesting new avenues for metabolic interventions in this patient population.

10.
Haematologica ; 108(9): 2343-2357, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37021547

RESUMO

Outcomes for patients with acute myeloid leukemia (AML) remain poor due to the inability of current therapeutic regimens to fully eradicate disease-initiating leukemia stem cells (LSC). Previous studies have demonstrated that oxidative phosphorylation (OXPHOS) is an essential process that is targetable in LSC. Sirtuin 3 (SIRT3), a mitochondrial deacetylase with a multi-faceted role in metabolic regulation, has been shown to regulate OXPHOS in cancer models; however, it has not yet been studied in the context of LSC. Thus, we sought to identify if SIRT3 is important for LSC function. Using RNAi and a SIRT3 inhibitor (YC8-02), we demonstrate that SIRT3 is a critical target for the survival of primary human LSC but is not essential for normal human hematopoietic stem and progenitor cell function. In order to elucidate the molecular mechanisms by which SIRT3 is essential in LSC we combined transcriptomic, proteomic, and lipidomic approaches, showing that SIRT3 is important for LSC function through the regulation of fatty acid oxidation (FAO) which is required to support OXPHOS and ATP production in human LSC. Further, we discovered two approaches to further sensitize LSC to SIRT3 inhibition. First, we found that LSC tolerate the toxic effects of fatty acid accumulation induced by SIRT3 inhibition by upregulating cholesterol esterification. Disruption of cholesterol homeostasis sensitizes LSC to YC8-02 and potentiates LSC death. Second, SIRT3 inhibition sensitizes LSC to the BCL-2 inhibitor venetoclax. Together, these findings establish SIRT3 as a regulator of lipid metabolism and potential therapeutic target in primitive AML cells.


Assuntos
Leucemia Mieloide Aguda , Sirtuína 3 , Humanos , Sirtuína 3/genética , Sirtuína 3/metabolismo , Sirtuína 3/farmacologia , Proteômica , Células-Tronco Neoplásicas/metabolismo , Metabolismo dos Lipídeos , Homeostase , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Ácidos Graxos/metabolismo , Ácidos Graxos/farmacologia , Ácidos Graxos/uso terapêutico , Colesterol
11.
Am J Hematol ; 98(7): 1017-1028, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36971592

RESUMO

Despite a wealth of exploratory plasma metabolomics studies in sickle cell disease (SCD), no study to date has evaluate a large and well phenotyped cohort to compare the primary erythrocyte metabolome of hemoglobin SS, SC and transfused AA red blood cells (RBCs) in vivo. The current study evaluates the RBC metabolome of 587 subjects with sickle cell sickle cell disease (SCD) from the WALK-PHaSST clinical cohort. The set includes hemoglobin SS, hemoglobin SC SCD patients, with variable levels of HbA related to RBC transfusion events. Here we explore the modulating effects of genotype, age, sex, severity of hemolysis, and transfusion therapy on sickle RBC metabolism. Results show that RBCs from patients with Hb SS genotypes-compared to AA RBCs from recent transfusion events or SC RBCs-are characterized by significant alterations of RBC acylcarnitines, pyruvate, sphingosine 1-phosphate, creatinine, kynurenine and urate metabolism. Surprisingly, the RBC metabolism of SC RBCs is dramatically different from SS, with all glycolytic intermediates significantly elevated in SS RBCs, with the exception of pyruvate. This result suggests a metabolic blockade at the ATP-generating phosphoenolpyruvate to pyruvate step of glycolysis, which is catalyzed by redox-sensitive pyruvate kinase. Metabolomics, clinical and hematological data were collated in a novel online portal. In conclusion, we identified metabolic signatures of HbS RBCs that correlate with the degree of steady state hemolytic anemia, cardiovascular and renal dysfunction and mortality.


Assuntos
Anemia Falciforme , Traço Falciforme , Humanos , Hemoglobina Falciforme/metabolismo , Eritrócitos/metabolismo , Piruvatos/metabolismo
12.
bioRxiv ; 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36824724

RESUMO

Despite a wealth of exploratory plasma metabolomics studies in sickle cell disease (SCD), no study to date has evaluate a large and well phenotyped cohort to compare the primary erythrocyte metabolome of hemoglobin SS, SC and transfused AA red blood cells (RBCs) in vivo . The current study evaluates the RBC metabolome of 587 subjects with sickle cell sickle cell disease (SCD) from the WALK-PHaSST clinical cohort. The set includes hemoglobin SS, hemoglobin SC SCD patients, with variable levels of HbA related to RBC transfusion events, and HbF related to hydroxyurea therapy. Here we explore the modulating effects of genotype, age, sex, severity of hemolysis, and hydroxyurea and transfusion therapy on sickle RBC metabolism. Data - collated in an online portal - show that the Hb SS genotype is associated with significant alterations of RBC acylcarnitines, pyruvate, sphingosine 1-phosphate, creatinine, kynurenine and urate metabolism. Surprisingly, the RBC metabolism of SC RBCs is dramatically different from SS, with all glycolytic intermediates significantly elevated in SS RBCs, with the exception of pyruvate. This result suggests a metabolic blockade at the ATP-generating phosphoenolpyruvate to pyruvate step of glycolysis, which is catalyzed by redox-sensitive pyruvate kinase. Increasing in vivo concentrations of HbA improved glycolytic flux and normalized the HbS erythrocyte metabolome. An unexpectedly limited metabolic effect of hydroxyurea and HbF was observed, possibly related to the modest induction of HbF in this cohort. The metabolic signature of HbS RBCs correlated with the degree of steady state hemolytic anemia, cardiovascular and renal dysfunction and mortality. Key points: In vivo dysregulation of RBC metabolism by HbS is evaluated by metabolic profiling of 587 patients with variable HbA, HbC and HbF levels;RBC acyl-carnitines, urate, pyruvate metabolism, S1P, kynurenine relate to hemolysis and cardiorenal dysfunction, respond to transfusion.

13.
Blood Transfus ; 21(1): 50-61, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36346885

RESUMO

BACKGROUND: The Red blood cell (RBC) storage lesion results in decreased circulation and function of transfused RBCs. Elevated oxidant stress and impaired energy metabolism are a hallmark of the storage lesion in both human and murine RBCs. Although human studies don't suffer concerns that findings may not translate, they do suffer from genetic and environmental variability amongst subjects. Murine models can control for genetics, environment, and much interventional experimentation can be carried out in mice that is neither technically feasible nor ethical in humans. However, murine models are only useful to the extent that they have similar biology to humans. Hypoxic storage has been shown to mitigate the storage lesion in human RBCs, but has not been investigated in mice. MATERIALS AND METHODS: RBCs from a C57BL6/J mouse strain were stored under normoxic (untreated) or hypoxic conditions (SO2 ~ 26%) for 1h, 7 and 12 days. Samples were tested for metabolomics at steady state, tracing experiments with 1,2,3-13C3-glucose, proteomics and end of storage post transfusion recovery. RESULTS: Hypoxic storage improved post-transfusion recovery and energy metabolism, including increased steady state and 13C3-labeled metabolites from glycolysis, high energy purines (adenosine triphosphate) and 2,3-diphospholgycerate. Hypoxic storage promoted glutaminolysis, increased glutathione pools, and was accompanied by elevation in the levels of free fatty acids and acyl-carnitines. DISCUSSION: This study isolates hypoxia, as a single independent variable, and shows similar effects as seen in human studies. These findings also demonstrate the translatability of murine models for hypoxic RBC storage and provide a pre-clinical platform for ongoing study.


Assuntos
Transfusão de Eritrócitos , Eritrócitos , Camundongos , Humanos , Animais , Metabolismo Energético , Hipóxia/metabolismo , Glicólise , Preservação de Sangue/métodos
14.
Blood Adv ; 7(8): 1379-1393, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36469038

RESUMO

Blood storage promotes the rapid depletion of red blood cell (RBC) high-energy adenosine triphosphate (ATP) and 2,3-diphosphoglycerate (DPG), which are critical regulators of erythrocyte physiology and function, as well as oxygen kinetics and posttransfusion survival. Sphingosine-1-phosphate (S1P) promotes fluxes through glycolysis. We hypothesized that S1P supplementation to stored RBC units would improve energy metabolism and posttransfusion recovery. We quantified S1P in 1929 samples (n = 643, storage days 10, 23, and 42) from the REDS RBC Omics study. We then supplemented human and murine RBCs from good storer (C57BL6/J) and poor storer strains (FVB) with S1P (1, 5, and 10 µM) before measurements of metabolism and posttransfusion recovery. Similar experiments were repeated for mice with genetic ablation of the S1P biosynthetic pathway (sphingosine kinase 1 [Sphk1] knockout [KO]). Sample analyses included metabolomics at steady state, tracing experiments with 1,2,3-13C3-glucose, proteomics, and analysis of end-of-storage posttransfusion recovery, under normoxic and hypoxic storage conditions. Storage promoted decreases in S1P levels, which were the highest in units donated by female or older donors. Supplementation of S1P to human and murine RBCs boosted the steady-state levels of glycolytic metabolites and glycolytic fluxes, ie the generation of ATP and DPG, at the expense of the pentose phosphate pathway. Lower posttransfusion recovery was observed upon S1P supplementation. All these phenomena were reversed in Sphk1 KO mice or with hypoxic storage. S1P is a positive regulator of energy metabolism and a negative regulator of antioxidant metabolism in stored RBCs, resulting in lower posttransfusion recoveries in murine models.


Assuntos
Transfusão de Eritrócitos , Eritrócitos , Humanos , Feminino , Camundongos , Animais , Transfusão de Eritrócitos/métodos , Eritrócitos/metabolismo , Lisofosfolipídeos/metabolismo , Esfingosina/metabolismo , Camundongos Knockout , Hipóxia/metabolismo
15.
Elife ; 112022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36537079

RESUMO

Coronavirus disease 2019 (COVID-19) is caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and can affect multiple organs, among which is the circulatory system. Inflammation and mortality risk markers were previously detected in COVID-19 plasma and red blood cells (RBCs) metabolic and proteomic profiles. Additionally, biophysical properties, such as deformability, were found to be changed during the infection. Based on such data, we aim to better characterize RBC functions in COVID-19. We evaluate the flow properties of RBCs in severe COVID-19 patients admitted to the intensive care unit by using microfluidic techniques and automated methods, including artificial neural networks, for an unbiased RBC analysis. We find strong flow and RBC shape impairment in COVID-19 samples and demonstrate that such changes are reversible upon suspension of COVID-19 RBCs in healthy plasma. Vice versa, healthy RBCs resemble COVID-19 RBCs when suspended in COVID-19 plasma. Proteomics and metabolomics analyses allow us to detect the effect of plasma exchanges on both plasma and RBCs and demonstrate a new role of RBCs in maintaining plasma equilibria at the expense of their flow properties. Our findings provide a framework for further investigations of clinical relevance for therapies against COVID-19 and possibly other infectious diseases.


Assuntos
COVID-19 , Deformação Eritrocítica , Humanos , Proteômica , SARS-CoV-2 , Eritrócitos/fisiologia
16.
Transfusion ; 62(12): 2596-2608, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36309927

RESUMO

BACKGROUND: Platelets are part of innate immunity and comprise the cellular portion of hemostasis. Platelets express sex hormone receptors on their plasma membrane and sex hormones can alter their function in vitro. Little is known about how age and sex may affect platelet biology; thus, we hypothesized that platelets from males and females have different metabolomic profiles, which may be altered by age and in vitro treatment with sex hormones. METHODS: Day 1 apheresis platelets were drawn from five 18-53-year-old, premenopausal younger females (YF), five ≥54-year-old, postmenopausal, older females (OF), five 18-44-year-old younger males (YM), and four ≥45-year-old older males (OM). Platelets were normalized to a standard concentration and metabolomics analyses were completed. Unsupervised statistical analyses and hierarchical clustering with principal component analyses were completed. RESULTS: Platelets from OM had (1) elevated mono-, di- and tri-carboxylates, (2) increased levels of free fatty acids, acyl-carnitines, and free amino acids, and (3) increased purine breakdown and deamination products. In vitro incubation with sex hormones only affected platelets from OM donors with trends towards increased ATP and other high-energy purines and decreases in L-proline and other amino acids. CONCLUSION: Platelets from OM's versus YF, OF, and YM have a different metabolome implying increased energy metabolism, more free fatty acids, acylcarnitines, and amino acids, and increased breakdown of purines and deamination products. However, only platelets from OM were affected by sex hormones in vitro. Platelets from OM are metabolically distinct, which may impart functional differences when transfused.


Assuntos
Ácidos Graxos não Esterificados , Metaboloma , Humanos , Pessoa de Meia-Idade , Projetos Piloto , Hormônios Esteroides Gonadais , Aminoácidos
17.
ACS Chem Biol ; 17(7): 1853-1865, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35796308

RESUMO

Biological therapeutics represent an increasing and critical component of newly approved drugs; however, the inability to deliver biologics intracellularly in a controlled manner remains a major limitation. We have developed a semi-synthetic, tunable phage-like particle (PLP) platform derived from bacteriophage λ. The shell surface can be decorated with small-molecule, biological and synthetic moieties, alone or in combination and in defined ratios. Here, we demonstrate that the platform can be used to deliver biological macromolecules intracellularly and in a controlled manner. Ubiquitin-specific protease 7 (USP7) is a deubiquitinating enzyme that has been widely recognized as an ideal target for the treatment of a variety of cancers. Recently, UbV.7.2, a novel biologic derived from the ubiquitin scaffold, was developed for inhibition of USP7, but issues remain in achieving efficient and controlled intracellular delivery of the biologic. We have shown that decoration of PLPs with trastuzumab (Trz), a HER2-targeted therapeutic used in the treatment of various cancers, results in specific targeting and uptake of Trz-PLPs into HER2-overexpressing breast cancer cells. By simultaneously decorating PLPs with Trz and UbV.7.2, we now show that these particles are also internalized by HER2-positive cells, thus providing a means for intracellular delivery of the biologic in a controlled fashion. Internalized particles retain USP7 inhibition activity of UbV.7.2 and alter the metabolic and proteomic landscapes of these cells. This study demonstrates that the λ "designer nanoparticles" represent a powerful system for the intracellular delivery of biologics in a defined dose.


Assuntos
Produtos Biológicos , Neoplasias da Mama , Nanopartículas , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Feminino , Humanos , Proteômica , Trastuzumab , Peptidase 7 Específica de Ubiquitina
18.
Proc Natl Acad Sci U S A ; 119(11)2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35217532

RESUMO

The impacts of interferon (IFN) signaling on COVID-19 pathology are multiple, with both protective and harmful effects being documented. We report here a multiomics investigation of systemic IFN signaling in hospitalized COVID-19 patients, defining the multiomics biosignatures associated with varying levels of 12 different type I, II, and III IFNs. The antiviral transcriptional response in circulating immune cells is strongly associated with a specific subset of IFNs, most prominently IFNA2 and IFNG. In contrast, proteomics signatures indicative of endothelial damage and platelet activation associate with high levels of IFNB1 and IFNA6. Seroconversion and time since hospitalization associate with a significant decrease in a specific subset of IFNs. Additionally, differential IFN subtype production is linked to distinct constellations of circulating myeloid and lymphoid immune cell types. Each IFN has a unique metabolic signature, with IFNG being the most associated with activation of the kynurenine pathway. IFNs also show differential relationships with clinical markers of poor prognosis and disease severity. For example, whereas IFNG has the strongest association with C-reactive protein and other immune markers of poor prognosis, IFNB1 associates with increased neutrophil to lymphocyte ratio, a marker of late severe disease. Altogether, these results reveal specialized IFN action in COVID-19, with potential diagnostic and therapeutic implications.


Assuntos
Sangue/metabolismo , COVID-19/imunologia , Interferons/sangue , Proteoma , Transcriptoma , COVID-19/sangue , Estudos de Casos e Controles , Conjuntos de Dados como Assunto , Humanos , Pacientes Internados
19.
Blood ; 139(4): 584-596, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-34525179

RESUMO

Acute myeloid leukemia (AML) is characterized by the presence of leukemia stem cells (LSCs), and failure to fully eradicate this population contributes to disease persistence/relapse. Prior studies have characterized metabolic vulnerabilities of LSCs, which demonstrate preferential reliance on oxidative phosphorylation (OXPHOS) for energy metabolism and survival. In the present study, using both genetic and pharmacologic strategies in primary human AML specimens, we show that signal transducer and activator of transcription 3 (STAT3) mediates OXPHOS in LSCs. STAT3 regulates AML-specific expression of MYC, which in turn controls transcription of the neutral amino acid transporter gene SLC1A5. We show that genetic inhibition of MYC or SLC1A5 acts to phenocopy the impairment of OXPHOS observed with STAT3 inhibition, thereby establishing this axis as a regulatory mechanism linking STAT3 to energy metabolism. Inhibition of SLC1A5 reduces intracellular levels of glutamine, glutathione, and multiple tricarboxylic acid (TCA) cycle metabolites, leading to reduced TCA cycle activity and inhibition of OXPHOS. Based on these findings, we used a novel small molecule STAT3 inhibitor, which binds STAT3 and disrupts STAT3-DNA, to evaluate the biological role of STAT3. We show that STAT3 inhibition selectively leads to cell death in AML stem and progenitor cells derived from newly diagnosed patients and patients who have experienced relapse while sparing normal hematopoietic cells. Together, these findings establish a STAT3-mediated mechanism that controls energy metabolism and survival in primitive AML cells.


Assuntos
Sistema ASC de Transporte de Aminoácidos/metabolismo , Leucemia Mieloide Aguda/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Células-Tronco Neoplásicas/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Sobrevivência Celular , Humanos , Células-Tronco Neoplásicas/citologia , Fosforilação Oxidativa , Células Tumorais Cultivadas
20.
Haematologica ; 107(1): 112-125, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33730845

RESUMO

Blood donor genetics and lifestyle affect the quality of red blood cell (RBC) storage. Heterozygotes for beta thalassemia (bThal+) constitute a non-negligible proportion of blood donors in the Mediterranean and other geographical areas. The unique hematological profile of bThal+ could affect the capacity of enduring storage stress, however, the storability of bThal+ RBC is largely unknown. In this study, RBC from 18 bThal+ donors were stored in the cold and profiled for primary (hemolysis) and secondary (phosphatidylserine exposure, potassium leakage, oxidative stress) quality measures, and metabolomics, versus sex- and age-matched controls. The bThal+ units exhibited better levels of storage hemolysis and susceptibility to lysis following osmotic, oxidative and mechanical insults. Moreover, bThal+ RBC had a lower percentage of surface removal signaling, reactive oxygen species and oxidative defects to membrane components at late stages of storage. Lower potassium accumulation and higher uratedependent antioxidant capacity were noted in the bThal+ supernatant. Full metabolomics analyses revealed alterations in purine and arginine pathways at baseline, along with activation of the pentose phosphate pathway and glycolysis upstream to pyruvate kinase in bThal+ RBC. Upon storage, substantial changes were observed in arginine, purine and vitamin B6 metabolism, as well as in the hexosamine pathway. A high degree of glutamate generation in bThal+ RBC was accompanied by low levels of purine oxidation products (IMP, hypoxanthine, allantoin). The bThal mutations impact the metabolism and the susceptibility to hemolysis of stored RBC, suggesting good post-transfusion recovery. However, hemoglobin increment and other clinical outcomes of bThal+ RBC transfusion deserve elucidation by future studies.


Assuntos
Talassemia beta , Preservação de Sangue , Transfusão de Eritrócitos , Eritrócitos/metabolismo , Hemólise , Humanos , Talassemia beta/genética , Talassemia beta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...