Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell Oncol ; 4(5): e1299273, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29057301

RESUMO

A key step during onset of most cases of non-small cell lung cancer (NSCLC) is the loss of the tumor suppressor p16INK4a (best known as p16), commonly due to promoter hypermethylation. We recently reported a novel regulatory pathway involving E6-associated protein and cell division control protein 6, which provides a methylation-independent mechanism for p16 silencing in patients with a particularly aggressive form of NSCLC.

2.
Oncogene ; 35(48): 6235-6245, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27641331

RESUMO

Restoration of tumor suppression is an attractive onco-therapeutic approach. It is particularly relevant when a tumor suppressor is excessively degraded by an overactive oncogenic E3 ligase. We previously discovered that the E6-associated protein (E6AP; as classified in the human papilloma virus context) is an E3 ligase that has an important role in the cellular stress response, and it directly targets the tumor-suppressor promyelocytic leukemia protein (PML) for proteasomal degradation. In this study, we have examined the role of the E6AP-PML axis in prostate cancer (PC). We show that knockdown (KD) of E6AP expression attenuates growth of PC cell lines in vitro. We validated this finding in vivo using cell line xenografts, patient-derived xenografts and mouse genetics. We found that KD of E6AP attenuates cancer cell growth by promoting cellular senescence in vivo, which correlates with restoration of tumor suppression by PML. In addition, we show that KD of E6AP sensitizes cells to radiation-induced death. Overall, our findings demonstrate a role for E6AP in the promotion of PC and support E6AP targeting as a novel approach for PC treatment, either alone or in combination with radiation.


Assuntos
Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Ubiquitina-Proteína Ligases/genética , Animais , Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular/genética , Senescência Celular/genética , Modelos Animais de Doenças , Regulação para Baixo , Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Xenoenxertos , Humanos , Masculino , Camundongos , Prognóstico , Proteína da Leucemia Promielocítica/genética , Proteína da Leucemia Promielocítica/metabolismo , Neoplasias da Próstata/mortalidade , RNA Interferente Pequeno/genética , Estresse Fisiológico , Carga Tumoral
3.
Cell Death Dis ; 6: e1821, 2015 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-26181202

RESUMO

The function of the tumor suppressor p53 is universally compromised in cancers. It is the most frequently mutated gene in human cancers (reviewed). In cases where p53 is not mutated, alternative regulatory pathways inactivate its tumor suppressive functions. This is primarily achieved through elevation in the expression of the key inhibitors of p53: Mdm2 or Mdmx (also called Mdm4) (reviewed). In breast cancer (BrCa), the frequency of p53 mutations varies markedly between the different subtypes, with basal-like BrCas bearing a high frequency of p53 mutations, whereas luminal BrCas generally express wild-type (wt) p53. Here we show that Mdmx is unexpectedly highly expressed in normal breast epithelial cells and its expression is further elevated in most luminal BrCas, whereas p53 expression is generally low, consistent with wt p53 status. Inducible knockdown (KD) of Mdmx in luminal BrCa MCF-7 cells impedes the growth of these cells in culture, in a p53-dependent manner. Importantly, KD of Mdmx in orthotopic xenograft transplants resulted in growth inhibition associated with prolonged survival, both in a preventative model and also in a treatment model. Growth impediment in response to Mdmx KD was associated with cellular senescence. The growth inhibitory capacity of Mdmx KD was recapitulated in an additional luminal BrCa cell line MPE600, which expresses wt p53. Further, the growth inhibitory capacity of Mdmx KD was also demonstrated in the wt p53 basal-like cell line SKBR7 line. These results identify Mdmx growth dependency in wt p53 expressing BrCas, across a range of subtypes. Based on our findings, we propose that Mdmx targeting is an attractive strategy for treating BrCas harboring wt p53.


Assuntos
Apoptose/genética , Neoplasias da Mama/genética , Proteínas Nucleares/biossíntese , Proteínas Proto-Oncogênicas/biossíntese , Proteína Supressora de Tumor p53/genética , Animais , Neoplasias da Mama/patologia , Proteínas de Ciclo Celular , Proliferação de Células/genética , Células Epiteliais/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Camundongos , Mutação , Proteínas Nucleares/genética , Proteínas Proto-Oncogênicas/genética , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...