Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Development ; 148(9)2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33969874

RESUMO

During heart development, epicardial cells residing within the outer layer undergo epithelial-mesenchymal transition (EMT) and migrate into the underlying myocardium to support organ growth and morphogenesis. Disruption of epicardial EMT results in embryonic lethality, yet its regulation is poorly understood. Here, we report epicardial EMT within the mesothelial layer of the mouse embryonic heart at ultra-high resolution using scanning electron microscopy combined with immunofluorescence analyses. We identified morphologically active EMT regions that associated with key components of the extracellular matrix, including the basement membrane-associated proteoglycan agrin. Deletion of agrin resulted in impaired EMT and compromised development of the epicardium, accompanied by downregulation of Wilms' tumor 1. Agrin enhanced EMT in human embryonic stem cell-derived epicardial-like cells by decreasing ß-catenin and promoting pFAK localization at focal adhesions, and promoted the aggregation of dystroglycan within the Golgi apparatus in murine epicardial cells. Loss of agrin resulted in dispersal of dystroglycan in vivo, disrupting basement membrane integrity and impairing EMT. Our results provide new insights into the role of the extracellular matrix in heart development and implicate agrin as a crucial regulator of epicardial EMT.


Assuntos
Agrina/metabolismo , Transição Epitelial-Mesenquimal/fisiologia , Proteínas da Matriz Extracelular/metabolismo , Coração/embriologia , Coração/crescimento & desenvolvimento , Organogênese/fisiologia , Animais , Feminino , Heterogeneidade Genética , Complexo de Golgi , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miocárdio/metabolismo , Pericárdio/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
2.
PLoS One ; 13(9): e0203745, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30216369

RESUMO

Prostate cancer (PCA) is one of the most common cancer types in men, with cancer progression being linked to hypoxia and the induction of hypoxia-inducible factor (HIF).We investigated the expression of pyruvate kinase M2 (PKM2), its regulation by HIF isoforms 1α and 2α, and its role in HIF stabilization. We additionally examined cell survival in the prostate cancer cell lines PC3 and LNCaP under severe hypoxic (0.1% O2) and normoxic (20% O2) conditions. qRT-PCR showed higher up-regulation of PKM2 mRNA expression in LNCaP cells than in PC3 cells, while western blotting showed that PKM2 protein levels were up-regulated only in LNCaP cells. Inhibition of HIF-1α and HIF-2α by small interfering RNA (si-RNA) demonstrated HIF-1α dependent up-regulation of PKM2 at the mRNA and protein levels in LNCaP cells. PKM2 inhibition by si-RNA significantly decreased hypoxia-response element (HRE) activation in a gene reporter assay and down-regulated HIF-1α target vascular endothelial growth factor (VEGF) mRNA expression in PC3 cells, whereas HIF-1α protein levels were not significantly reduced. Additionally, PKM2 inhibition significantly reduced clonogenic survival in both cell lines in a colony formation assay. Prolyl hydroxylase 3 (PHD3) mRNA expression was up-regulated in both cell lines. It has been shown that PKM2 expression is regulated by HIF-1α and that PKM2 favors HIF-1α transactivation under mild (1% O2) but not severe (0.1% O2) hypoxic conditions, and some of our findings are consistent with these previous results. However, this mechanism was not fully observed in our studied cell lines, as PKM2 regulation and HIF-1α stabilization at the transactivation level occurred under severe hypoxic conditions. This discrepancy suggests that tumor tissue origin and cell type influence this model. Our findings expand the current knowledge of the mechanisms of PCA regulation, and would be important in developing novel therapeutic strategies.


Assuntos
Proteínas de Transporte/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Proteínas de Membrana/genética , Neoplasias da Próstata/genética , Hormônios Tireóideos/genética , Proteínas de Transporte/metabolismo , Hipóxia Celular , Linhagem Celular Tumoral , Proliferação de Células/genética , Sobrevivência Celular , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Células PC-3 , Neoplasias da Próstata/metabolismo , Interferência de RNA , Hormônios Tireóideos/metabolismo , Proteínas de Ligação a Hormônio da Tireoide
3.
J Mol Cell Cardiol ; 116: 57-68, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29408197

RESUMO

Sphingosine-1-Phosphate (S1P) is a potent signaling lipid. The effects of S1P are mediated by the five S1P receptors (S1PR). In the endothelium S1PR1 is the predominant receptor and thus S1PR1 abundance limits S1P signaling. Recently, lncRNAs were identified as a novel class of molecules regulating gene expression. Interestingly, the lncRNA NONHSAT004848 (LISPR1, Long intergenic noncoding RNA antisense to S1PR1), is closely positioned to the S1P1 receptors gene and in part shares its promoter region. We hypothesize that LISPR1 controls endothelial S1PR1 expression and thus S1P-induced signaling in endothelial cells. In vitro transcription and translation as well as coding potential assessment showed that LISPR1 is indeed noncoding. LISPR1 was localized in both cytoplasm and nucleus and harbored a PolyA tail at the 3'end. In human umbilical vein endothelial cells, as well as human lung tissue, qRT-PCR and RNA-Seq revealed high expression of LISPR1. S1PR1 and LISPR1 were downregulated in human pulmonary diseases such as COPD. LISPR1 but also S1PR1 were induced by inflammation, shear stress and statins. Knockdown of LISPR1 attenuated endothelial S1P-induced migration and spheroid outgrowth of endothelial cells. LISPR1 knockdown decreased S1PR1 expression, which was paralleled by an increase of the binding of the transcriptional repressor ZNF354C to the S1PR1 promoter and a reduction of the recruitment of RNA Polymerase II to the S1PR1 5'end. This resulted in attenuated S1PR1 expression and attenuated S1P downstream signaling. Collectively, the disease relevant lncRNA LISPR1 acts as a novel regulatory unit important for S1PR1 expression and endothelial cell function.


Assuntos
Células Endoteliais da Veia Umbilical Humana/metabolismo , Lisofosfolipídeos/metabolismo , RNA Longo não Codificante/metabolismo , Transdução de Sinais , Esfingosina/análogos & derivados , DNA/metabolismo , Regulação para Baixo/genética , Regulação da Expressão Gênica , Humanos , Pulmão/metabolismo , Neovascularização Fisiológica , RNA Longo não Codificante/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Lisoesfingolipídeo/metabolismo , Proteínas Repressoras/metabolismo , Esfingosina/metabolismo , Transcrição Gênica
4.
Eur Respir J ; 48(3): 903-17, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27492834

RESUMO

Epigenetics is usually defined as the study of changes in phenotype and gene expression not related to sequence alterations, but rather the chemical modifications of DNA and of its associated chromatin proteins. These modifications can be acquired de novo, being inherited, and represent the way in which genome and environment interact. Recent evidence points to the involvement of epigenetic changes in the pathogenesis of pulmonary hypertension, as they can partly explain how environmental and lifestyle factors can impose susceptibility to pulmonary hypertension and can explain the phenotypic alteration and maintenance of the disease state.In this article, we review the epigenetic regulatory mechanisms that are mediated by DNA methylation, the post-translational modifications of histone tails and noncoding RNAs in the pathogenesis of pulmonary hypertension. Furthermore, pharmacological interventions aimed at epigenetic regulators/modifiers and their outcomes in different cellular and preclinical rodent models are discussed. Lastly, the remaining challenges and future directions in which to explore epigenetic-based therapies in pulmonary hypertension are discussed.


Assuntos
Epigênese Genética , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/terapia , Animais , Cromatina/química , Metilação de DNA , Progressão da Doença , Meio Ambiente , Expressão Gênica , Perfilação da Expressão Gênica , Histonas/metabolismo , Humanos , Camundongos , Fenótipo , Processamento de Proteína Pós-Traducional , RNA não Traduzido/metabolismo , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...