Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 373(6556): 789-792, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34385395

RESUMO

Accretion disks around supermassive black holes in active galactic nuclei produce continuum radiation at ultraviolet and optical wavelengths. Physical processes in the accretion flow lead to stochastic variability of this emission on a wide range of time scales. We measured the optical continuum variability observed in 67 active galactic nuclei and the characteristic time scale at which the variability power spectrum flattens. We found a correlation between this time scale and the black hole mass extending over the entire mass range of supermassive black holes. This time scale is consistent with the expected thermal time scale at the ultraviolet-emitting radius in standard accretion disk theory. Accreting white dwarfs lie close to this correlation, suggesting a common process for all accretion disks.

2.
Phys Rev Lett ; 125(14): 141104, 2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-33064506

RESUMO

The 2017 Event Horizon Telescope (EHT) observations of the central source in M87 have led to the first measurement of the size of a black-hole shadow. This observation offers a new and clean gravitational test of the black-hole metric in the strong-field regime. We show analytically that spacetimes that deviate from the Kerr metric but satisfy weak-field tests can lead to large deviations in the predicted black-hole shadows that are inconsistent with even the current EHT measurements. We use numerical calculations of regular, parametric, non-Kerr metrics to identify the common characteristic among these different parametrizations that control the predicted shadow size. We show that the shadow-size measurements place significant constraints on deviation parameters that control the second post-Newtonian and higher orders of each metric and are, therefore, inaccessible to weak-field tests. The new constraints are complementary to those imposed by observations of gravitational waves from stellar-mass sources.

3.
Ann Thorac Surg ; 110(6): 2020-2025, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32376350

RESUMO

Background: The coronavirus disease 2019 (COVID-19) pandemic has dramatically reduced adult cardiac surgery case volumes as institutions and surgeons curtail nonurgent operations. There will be a progressive increase in deferred cases during the pandemic that will require completion within a limited time frame once restrictions ease. We investigated the impact of various levels of increased postpandemic hospital operating capacity on the time to clear the backlog of deferred cases. Methods: We collected data from 4 cardiac surgery programs across 2 health systems. We recorded case rates at baseline and during the COVID-19 pandemic and created a mathematical model to quantify the cumulative surgical backlog based on the projected pandemic duration. We then used the model to predict the time required to clear the backlog depending on the level of increased operating capacity. Results: Cardiac surgery volumes fell to 54% of baseline after restrictions were implemented. Assuming a service restoration date of either June 1 or July 1, we calculated the need to perform 216% or 263% of monthly baseline volume, respectively, to clear the backlog in 1 month. The actual duration required to clear the backlog highly depends on hospital capacity in the post-COVID period, and ranges from 1 to 8 months, depending on when services are restored and the degree of increased capacity. Conclusions: Cardiac surgical operating capacity during the COVID-19 recovery period will have a dramatic impact on the time to clear the deferred cases backlog. Inadequate operating capacity may cause substantial delays and increase morbidity and mortality. If only prepandemic capacity is available, the backlog will never clear.


Assuntos
Betacoronavirus , Procedimentos Cirúrgicos Cardíacos/estatística & dados numéricos , Infecções por Coronavirus/epidemiologia , Controle de Infecções/organização & administração , Pneumonia Viral/epidemiologia , Capacidade de Resposta ante Emergências/estatística & dados numéricos , COVID-19 , Infecções por Coronavirus/prevenção & controle , Procedimentos Cirúrgicos Eletivos/estatística & dados numéricos , Humanos , Modelos Estatísticos , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Utilização de Procedimentos e Técnicas , SARS-CoV-2
4.
Sci Adv ; 6(12): eaaz1310, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32206723

RESUMO

The Event Horizon Telescope image of the supermassive black hole in the galaxy M87 is dominated by a bright, unresolved ring. General relativity predicts that embedded within this image lies a thin "photon ring," which is composed of an infinite sequence of self-similar subrings that are indexed by the number of photon orbits around the black hole. The subrings approach the edge of the black hole "shadow," becoming exponentially narrower but weaker with increasing orbit number, with seemingly negligible contributions from high-order subrings. Here, we show that these subrings produce strong and universal signatures on long interferometric baselines. These signatures offer the possibility of precise measurements of black hole mass and spin, as well as tests of general relativity, using only a sparse interferometric array.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...