Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38746288

RESUMO

We previously reported altered neuronal Ca 2+ dynamics in the motor cortex of 12-month-old JNPL3 tauopathy mice during quiet wakefulness or forced running, with a tau antibody treatment significantly restoring the neuronal Ca 2+ activity profile and decreasing pathological tau in these mice 1 . Whether neuronal functional deficits occur at an early stage of tauopathy and if tau antibody treatment is effective in younger tauopathy mice needed further investigation. In addition, neuronal network activity and neuronal firing patterns have not been well studied in behaving tauopathy models. In this study, we first performed in vivo two-photon Ca 2+ imaging in JNPL3 mice in their early stage of tauopathy at 6 months of age, compared to 12 month old mice and age-matched wild-type controls to evaluate neuronal functional deficits. At the animal level, frequency of neuronal Ca 2+ transients decreased only in 6 month old tauopathy mice compared to controls, and only when animals were running on a treadmill. The amplitude of neuronal transients decreased in tauopathy mice compared to controls under resting and running conditions in both age groups. Total neuronal activity decreased only in 6 month old tauopathy mice compared to controls under resting and running conditions. Within either tauopathy or wild-type group, only total activity decreased in older wild-type animals. The tauopathy mice at different ages did not differ in neuronal Ca 2+ transient frequency, amplitude or total activity. In summary, neuronal function did significantly attenuate at an early age in tauopathy mice compared to controls but interestingly did not deteriorate between 6 and 12 months of age. A more detailed populational analysis of the pattern of Ca 2+ activity at the neuronal level in the 6 month old cohort confirmed neuronal hypoactivity in layer 2/3 of primary motor cortex, compared to wild-type controls, when animals were either resting or running on a treadmill. Despite reduced activity, neuronal Ca 2+ profiles exhibited enhanced synchrony and dysregulated responses to running stimulus. Further ex vivo electrophysiological recordings revealed reduction of spontaneous excitatory synaptic transmission onto and in pyramidal neurons and enhanced excitability of inhibitory neurons in motor cortex, which were likely responsible for altered neuronal network activity in this region. Lastly, tau antibody treatment reduced pathological tau and gliosis partially restored the neuronal Ca 2+ activity deficits but failed to rescue altered network changes. Taken together, substantial neuronal and network dysfunction occurred in the early stage of tauopathy that was partially alleviated with acute tau antibody treatment, which highlights the importance of functional assessment when evaluating the therapeutic potential of tau antibodies. Highlights: Layer 2/3 motor cortical neurons exhibited hypofunction in awake and behaving mice at the early stage of tauopathy.Altered neuronal network activity disrupted local circuitry engagement in tauopathy mice during treadmill running.Layer 2/3 motor cortical neurons in tauopathy mice exhibited enhanced neuronal excitability and altered excitatory synaptic transmissions.Acute tau antibody treatment reduced pathological tau and gliosis, and partially restored neuronal hypofunction profiles but not network dysfunction.

2.
Neuron ; 112(9): 1498-1517.e8, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38430912

RESUMO

Recognizing the affective states of social counterparts and responding appropriately fosters successful social interactions. However, little is known about how the affective states are expressed and perceived and how they influence social decisions. Here, we show that male and female mice emit distinct olfactory cues after experiencing distress. These cues activate distinct neural circuits in the piriform cortex (PiC) and evoke sexually dimorphic empathic behaviors in observers. Specifically, the PiC → PrL pathway is activated in female observers, inducing a social preference for the distressed counterpart. Conversely, the PiC → MeA pathway is activated in male observers, evoking excessive self-grooming behaviors. These pathways originate from non-overlapping PiC neuron populations with distinct gene expression signatures regulated by transcription factors and sex hormones. Our study unveils how internal states of social counterparts are processed through sexually dimorphic mechanisms at the molecular, cellular, and circuit levels and offers insights into the neural mechanisms underpinning sex differences in higher brain functions.


Assuntos
Empatia , Caracteres Sexuais , Animais , Masculino , Feminino , Camundongos , Empatia/fisiologia , Córtex Piriforme/fisiologia , Córtex Piriforme/metabolismo , Sinais (Psicologia) , Camundongos Endogâmicos C57BL , Afeto/fisiologia , Neurônios/fisiologia , Neurônios/metabolismo , Comportamento Animal/fisiologia
3.
Biomimetics (Basel) ; 9(3)2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38534866

RESUMO

An aerodynamic/hydrodynamic investigation of water cross-over is performed for a bionic unmanned aquatic-aerial amphibious vehicle (bionic UAAV). According to flying fish features and UAAV flight requirements of water cross-over, the bionic conceptual design of crossing over water is described and planned in multiple stages and modes of motion. A solution procedure for the numerical simulation method, based on a modified SST turbulence model and the VOF model, is expressed, and a verification study is presented using a typical case. Longitudinal-lateral numerical simulation analysis investigates the cruise performance underwater and in the air. The numerical simulation and principal experiment verification are conducted for crossing over water and water surface acceleration. The results indicate that the bionic UAAV has an excellent aerodynamic/hydrodynamic performance and variant configuration to adapt to water cross-over. The bionic UAAV has good water and air navigation stability, and the cruise flying lift-drag ratio is greater than 15 at a low Reynolds number. Its pitching moment has the phenomenon of a "water mound" forming and breaking at the water cross-over process. The present method and the bionic variant configuration provide a feasible water cross-over design and analysis strategy for bionic UAAVs.

4.
Methods Mol Biol ; 2676: 215-232, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37277636

RESUMO

Enzymes are critical for cellular functions, and malfunction of enzymes is closely related to many human diseases. Inhibition studies can help in deciphering the physiological roles of enzymes and guide conventional drug development programs. In particular, chemogenetic approaches enabling rapid and selective inhibition of enzymes in mammalian cells have unique advantages. Here, we describe the procedure for rapid and selective inhibition of a kinase in mammalian cells by bioorthogonal ligand tethering (iBOLT). Briefly, a non-canonical amino acid bearing a bioorthogonal group is genetically incorporated into the target kinase by genetic code expansion. The sensitized kinase can react with a conjugate containing a complementary biorthogonal group linked with a known inhibitory ligand. As a result, tethering of the conjugate to the target kinase allows selective inhibition of protein function. Here, we demonstrate this method by using cAMP-dependent protein kinase catalytic subunit alpha (PKA-Cα) as the model enzyme. The method should be applicable to other kinases, enabling their rapid and selective inhibition.


Assuntos
Aminoácidos , Proteínas , Animais , Humanos , Ligantes , Proteínas/química , Fosforilação , Aminoácidos/química , Mamíferos/metabolismo
5.
Front Cell Dev Biol ; 11: 1165125, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37143894

RESUMO

Nerve growth factor (NGF) is critical for neuronal physiology during development and adulthood. Despite the well-recognized effect of NGF on neurons, less is known about whether NGF can actually affect other cell types in the central nervous system (CNS). In this work, we show that astrocytes are susceptible to changes in ambient levels of NGF. First, we observe that interfering with NGF signaling in vivo via the constitutive expression of an antiNGF antibody induces astrocytic atrophy. A similar asthenic phenotype is encountered in an uncleavable proNGF transgenic mouse model (TgproNGF#72), effectively increasing the brain proNGF levels. To examine whether this effect on astrocytes is cell-autonomous, we cultured wild-type primary astrocytes in the presence of antiNGF antibodies, uncovering that a short incubation period is sufficient to potently and rapidly trigger calcium oscillations. Acute induction of calcium oscillations by antiNGF antibodies is followed by progressive morphological changes similar to those observed in antiNGF AD11 mice. Conversely, incubation with mature NGF has no effect on either calcium activity nor on astrocytic morphology. At longer timescales, transcriptomic analysis revealed that NGF-deprived astrocytes acquire a proinflammatory profile. In particular, antiNGF-treated astrocytes show upregulation of neurotoxic transcripts and downregulation of neuroprotective mRNAs. Consistent with that data, culturing wild-type neurons in the presence of NGF-deprived astrocytes leads to neuronal cell death. Finally, we report that in both awake and anesthetized mice, astrocytes in layer I of the motor cortex respond with an increase in calcium activity to acute NGF inhibition using either NGF-neutralizing antibodies or a TrkA-Fc NGF scavenger. Moreover, in vivo calcium imaging in the cortex of the 5xFAD neurodegeneration mouse model shows an increased level of spontaneous calcium activity in astrocytes, which is significantly reduced after acute administration of NGF. In conclusion, we unveil a novel neurotoxic mechanism driven by astrocytes, triggered by their sensing and reacting to changes in the levels of ambient NGF.

6.
Nat Neurosci ; 26(4): 570-578, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36879142

RESUMO

There is a demand for noninvasive methods to ameliorate disease. We investigated whether 40-Hz flickering light entrains gamma oscillations and suppresses amyloid-ß in the brains of APP/PS1 and 5xFAD mouse models of Alzheimer's disease. We used multisite silicon probe recording in the visual cortex, entorhinal cortex or the hippocampus and found that 40-Hz flickering simulation did not engage native gamma oscillations in these regions. Additionally, spike responses in the hippocampus were weak, suggesting 40-Hz light does not effectively entrain deep structures. Mice avoided 40-Hz flickering light, associated with elevated cholinergic activity in the hippocampus. We found no reliable changes in plaque count or microglia morphology by either immunohistochemistry or in vivo two-photon imaging following 40-Hz stimulation, nor reduced levels of amyloid-ß 40/42. Thus, visual flicker stimulation may not be a viable mechanism for modulating activity in deep structures.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Hipocampo/metabolismo , Microglia/metabolismo , Camundongos Transgênicos , Modelos Animais de Doenças , Precursor de Proteína beta-Amiloide , Placa Amiloide
7.
Nat Commun ; 14(1): 689, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36755026

RESUMO

Increased low frequency cortical oscillations are observed in people with neuropathic pain, but the cause of such elevated cortical oscillations and their impact on pain development remain unclear. By imaging neuronal activity in a spared nerve injury (SNI) mouse model of neuropathic pain, we show that neurons in dorsal root ganglia (DRG) and somatosensory cortex (S1) exhibit synchronized activity after peripheral nerve injury. Notably, synchronized activity of DRG neurons occurs within hours after injury and 1-2 days before increased cortical oscillations. This DRG synchrony is initiated by axotomized neurons and mediated by local purinergic signaling at the site of nerve injury. We further show that synchronized DRG activity after SNI is responsible for increasing low frequency cortical oscillations and synaptic remodeling in S1, as well as for inducing animals' pain-like behaviors. In naive mice, enhancing the synchrony, not the level, of DRG neuronal activity causes synaptic changes in S1 and pain-like behaviors similar to SNI mice. Taken together, these results reveal the critical role of synchronized DRG neuronal activity in increasing cortical plasticity and oscillations in a neuropathic pain model. These findings also suggest the potential importance of detection and suppression of elevated cortical oscillations in neuropathic pain states.


Assuntos
Neuralgia , Traumatismos dos Nervos Periféricos , Camundongos , Animais , Células Receptoras Sensoriais , Gânglios Espinais
8.
Nat Commun ; 14(1): 503, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36720872

RESUMO

Memories can be modified by new experience in a specific or generalized manner. Changes in synaptic connections are crucial for memory storage, but it remains unknown how synaptic changes associated with different memories are distributed within neuronal circuits and how such distributions affect specific or generalized modification by novel experience. Here we show that fear conditioning with two different auditory stimuli (CS) and footshocks (US) induces dendritic spine elimination mainly on different dendritic branches of layer 5 pyramidal neurons in the mouse motor cortex. Subsequent fear extinction causes CS-specific spine formation and extinction of freezing behavior. In contrast, spine elimination induced by fear conditioning with >2 different CS-USs often co-exists on the same dendritic branches. Fear extinction induces CS-nonspecific spine formation and generalized fear extinction. Moreover, activation of somatostatin-expressing interneurons increases the occurrence of spine elimination induced by different CS-USs on the same dendritic branches and facilitates the generalization of fear extinction. These findings suggest that specific or generalized modification of existing memories by new experience depends on whether synaptic changes induced by previous experiences are segregated or co-exist at the level of individual dendritic branches.


Assuntos
Extinção Psicológica , Medo , Animais , Camundongos , Plasticidade Neuronal , Generalização Psicológica , Dendritos
9.
Sci Rep ; 12(1): 17736, 2022 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-36273090

RESUMO

In vivo imaging has been widely used for investigating the structure and function of neurons typically located within ~ 800 µm below the cortical surface. Due to light scattering and absorption, it has been difficult to perform in-vivo imaging of neurons in deep cortical and subcortical regions of large animals with two-photon microscopy. Here, we combined a thin-wall quartz capillary with a GRIN lens attached to a prism for large-volume structural and calcium imaging of neurons located 2 mm below the surface of rabbit and monkey brains. The field of view was greatly expanded by rotating and changing the depth of the imaging probe inside a quartz capillary. Calcium imaging of layer 5/6 neurons in the rabbit motor cortex revealed differential activity of these neurons between quiet wakefulness and slow wave sleep. The method described here provides an important tool for studying the structure and function of neurons located deep in the brains of large animals.


Assuntos
Cálcio , Microscopia , Animais , Coelhos , Cálcio/fisiologia , Haplorrinos , Quartzo , Encéfalo/diagnóstico por imagem , Neuroimagem/métodos
10.
Cell Rep ; 40(7): 111229, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35977515

RESUMO

Learning induces the formation of new synapses in addition to changes of existing synapse strength. However, it remains unclear whether new synapses serve different functions from existing synapses. By performing two-photon structural and Ca2+ imaging of postsynaptic dendritic spines in layer 2/3 pyramidal neurons, we show that new spine formation increases in the mouse motor cortex 8-24 h after motor training. New spines, not existing spine populations, are preferentially active when mice perform the learned task rather than a new task. New spine activity is also more synchronized with dendritic/somatic activity when the learned task, not a new task, is carried out. Furthermore, new spines are formed to increase the task specificity in a subset of neurons, and their survival is not affected when a new task is learned. These findings suggest that newly formed synapses preferentially increase the task specificity of neurons over existing synapses at the retention stage of motor learning.


Assuntos
Espinhas Dendríticas , Plasticidade Neuronal , Animais , Espinhas Dendríticas/fisiologia , Aprendizagem/fisiologia , Camundongos , Plasticidade Neuronal/fisiologia , Células Piramidais/fisiologia , Sinapses/fisiologia
11.
Transl Psychiatry ; 12(1): 128, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35351867

RESUMO

Including apolipoprotein E-ε4 (APOE-ε4) status and older age into consideration may increase the accuracy of plasma Aß42/Aß40 detecting Aß+ individuals, but the rationale behind this remains to be fully understood. Besides, both Aß pathology and vascular diseases are related to neurodegeneration and cognitive decline, but it is still not fully understood how APOE-ε4 modulates these relationships. In this study, we examined 241 non-demented Alzheimer's Disease Neuroimaging Initiative participants to investigate the associations among age, white matter hyperintensities (WMH), hypertension, hyperlipidemia, body mass index (BMI), plasma Aß42/Aß40 measured by liquid chromatography tandem mass spectrometry, and 18F-florbetapir Aß PET as well as their prediction of longitudinal adjusted hippocampal volume (aHCV) and cognition in APOE-ε4 carriers and non-carriers. We found older age predicted faster WMH increase (p = 0.024) and cortical Aß accumulation (p = 0.043) in APOE-ε4 non-carriers only, whereas lower plasma Aß42/Aß40 predicted faster cortical Aß accumulation (p < 0.018) regardless of APOE-ε4 status. While larger WMH and underweight predicted (p < 0.05) faster decreases in aHCV and cognition in APOE-ε4 non-carriers, lower plasma Aß42/Aß40 predicted (p < 0.031) faster decreases in aHCV and cognition in APOE-ε4 carriers. Higher Aß PET also predicted faster rates of aHCV (p = 0.010) in APOE-ε4 carriers only, but was related to faster rates of cognitive decline (p < 0.022) regardless of APOE-ε4 status. These findings may provide novel insights into understanding different mechanisms underlie neurodegeneration and cognitive decline in non-demented elderly adults with and without APOE-ε4 allele, which may help the design of anti-Alzheimer's clinical trials.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doenças Vasculares , Adulto , Idoso , Doença de Alzheimer/genética , Apolipoproteína E4/genética , Disfunção Cognitiva/genética , Humanos , Testes Neuropsicológicos
12.
Cell ; 185(5): 755-758, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35245477

RESUMO

Support for basic science has been eclipsed by initiatives aimed at specific medical problems. The latest example is the dismantling of the Skirball Institute at NYU School of Medicine. Here, we reflect on the achievements and mission underlying the Skirball to gain insight into the dividends of maintaining a basic science vision within the academic enterprises.


Assuntos
Academias e Institutos , Pesquisa Biomédica , Faculdades de Medicina
13.
Brain Stimul ; 15(1): 190-196, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34952226

RESUMO

Neural modulation plays a major role in delineating the circuit mechanisms and serves as the cornerstone of neural interface technologies. Among the various modulation mechanisms, ultrasound enables noninvasive label-free deep access to mammalian brain tissue. To date, most if not all ultrasonic neural modulation implementations are based on ∼1 MHz carrier frequency. The long acoustic wavelength results in a spatially coarse modulation zone, often spanning over multiple function regions. The modulation of one function region is inevitably linked with the modulation of its neighboring regions. Moreover, the lack of in vivo cellular resolution cell-type-specific recording capabilities in most studies prevents the revealing of the genuine cellular response to ultrasound. To significantly increase the spatial resolution, we explored the application of high-frequency ultrasound. To investigate the neuronal response at cellular resolutions, we developed a dual-modality system combining in vivo two-photon calcium imaging and focused ultrasound modulation. The studies show that the ∼30 MHz ultrasound can suppress the neuronal activity in awake mice at 100-µm scale spatial resolutions, paving the way for high-resolution ultrasonic neural modulation. The dual-modality in vivo system validated through this study will serve as a general platform for studying the dynamics of various cell types in response to ultrasound.


Assuntos
Cálcio , Ultrassom , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Mamíferos , Camundongos , Neurônios/fisiologia , Ultrassonografia/métodos
14.
Proc Natl Acad Sci U S A ; 118(50)2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34873044

RESUMO

Changes in synaptic connections are believed to underlie long-term memory storage. Previous studies have suggested that sleep is important for synapse formation after learning, but how sleep is involved in the process of synapse formation remains unclear. To address this question, we used transcranial two-photon microscopy to investigate the effect of postlearning sleep on the location of newly formed dendritic filopodia and spines of layer 5 pyramidal neurons in the primary motor cortex of adolescent mice. We found that newly formed filopodia and spines were partially clustered with existing spines along individual dendritic segments 24 h after motor training. Notably, posttraining sleep was critical for promoting the formation of dendritic filopodia and spines clustered with existing spines within 8 h. A fraction of these filopodia was converted into new spines and contributed to clustered spine formation 24 h after motor training. This sleep-dependent spine formation via filopodia was different from retraining-induced new spine formation, which emerged from dendritic shafts without prior presence of filopodia. Furthermore, sleep-dependent new filopodia and spines tended to be formed away from existing spines that were active at the time of motor training. Taken together, these findings reveal a role of postlearning sleep in regulating the number and location of new synapses via promoting filopodial formation.


Assuntos
Dendritos/fisiologia , Atividade Motora/fisiologia , Pseudópodes/fisiologia , Células Piramidais/fisiologia , Sono/fisiologia , Animais , Proteínas de Bactérias , Cálcio/metabolismo , Feminino , Proteínas Luminescentes , Masculino , Camundongos , Plasticidade Neuronal , Restrição Física
15.
Nat Methods ; 18(8): 959-964, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34354291

RESUMO

To understand neural circuit mechanisms underlying behavior, it is crucial to observe the dynamics of neuronal structure and function in different regions of the brain. Since current noninvasive imaging technologies allow cellular-resolution imaging of neurons only within ~1 mm below the cortical surface, the majority of mouse brain tissue remains inaccessible. While miniature optical imaging probes allow access to deep brain regions, cellular-resolution imaging is typically restricted to a small tissue volume. To increase the tissue access volume, we developed a clear optically matched panoramic access channel technique (COMPACT). With probe dimensions comparable to those of common gradient-index lenses, COMPACT enables a two to three orders of magnitude greater tissue access volume. We demonstrated the capabilities of COMPACT by multiregional calcium imaging in mice during sleep. We believe that large-volume in vivo imaging with COMPACT will be valuable to a variety of deep tissue imaging applications.


Assuntos
Encéfalo/fisiologia , Cálcio/metabolismo , Microscopia/métodos , Neuroimagem/métodos , Imagem Óptica/métodos , Sono/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL
16.
PLoS Biol ; 19(7): e3001337, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34292944

RESUMO

Peripheral nerve injury-induced mechanical allodynia is often accompanied by abnormalities in the higher cortical regions, yet the mechanisms underlying such maladaptive cortical plasticity remain unclear. Here, we show that in male mice, structural and functional changes in the primary somatosensory cortex (S1) caused by peripheral nerve injury require neuron-microglial signaling within the local circuit. Following peripheral nerve injury, microglia in the S1 maintain ramified morphology and normal density but up-regulate the mRNA expression of brain-derived neurotrophic factor (BDNF). Using in vivo two-photon imaging and Cx3cr1CreER;Bdnfflox mice, we show that conditional knockout of BDNF from microglia prevents nerve injury-induced synaptic remodeling and pyramidal neuron hyperactivity in the S1, as well as pain hypersensitivity in mice. Importantly, S1-targeted removal of microglial BDNF largely recapitulates the beneficial effects of systemic BDNF depletion on cortical plasticity and allodynia. Together, these findings reveal a pivotal role of cerebral microglial BDNF in somatosensory cortical plasticity and pain hypersensitivity.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/fisiologia , Encéfalo/metabolismo , Hiperalgesia/fisiopatologia , Microglia/metabolismo , Plasticidade Neuronal/fisiologia , Traumatismos dos Nervos Periféricos/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/biossíntese , Fator Neurotrófico Derivado do Encéfalo/genética , Camundongos , Camundongos Knockout , Traumatismos dos Nervos Periféricos/fisiopatologia
17.
J Neuroinflammation ; 18(1): 81, 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33757565

RESUMO

BACKGROUND: Ischemia can induce rapid activation of microglia in the brain. As key immunocompetent cells, reactive microglia play an important role in pathological development of ischemic stroke. However, the role of activated microglia during the development of ischemia remains controversial. Thus, we aimed to investigate the function of reactive microglia in the early stage of ischemic stroke. METHODS: A Rose Bengal photothrombosis model was applied to induce targeted ischemic stroke in mice. CX3CR1CreER:R26iDTR mice were used to specifically deplete resident microglia through intragastric administration of tamoxifen (Ta) and intraperitoneal injection of diphtheria toxin (DT). At day 3 after ischemic stroke, behavioral tests were performed. After that, mouse brains were collected for further histological analysis and detection of mRNA expression of inflammatory factors. RESULTS: The results showed that specific depletion of microglia resulted in a significant decrease in ischemic infarct volume and improved performance in motor ability 3 days after stroke. Microglial depletion caused a remarkable reduction in the densities of degenerating neurons and inducible nitric oxide synthase positive (iNOS+) cells. Importantly, depleting microglia induced a significant increase in the mRNA expression level of anti-inflammatory factors TGF-ß1, Arg1, IL-10, IL-4, and Ym1 as well as a significant decline of pro-inflammatory factors TNF-α, iNOS, and IL-1ß 3 days after stroke. CONCLUSIONS: These results suggest that activated microglia is an important modulator of the brain's inflammatory response in stroke, contributing to neurological deficit and infarct expansion. Modulation of the inflammatory response through the elimination of microglia at a precise time point may be a promising therapeutic approach for the treatment of cerebral ischemia.


Assuntos
Isquemia Encefálica/metabolismo , Isquemia Encefálica/prevenção & controle , Mediadores da Inflamação/metabolismo , Microglia/metabolismo , Acidente Vascular Cerebral/metabolismo , Animais , Isquemia Encefálica/patologia , Gliose/metabolismo , Gliose/patologia , Gliose/prevenção & controle , Mediadores da Inflamação/antagonistas & inibidores , Camundongos , Camundongos Transgênicos , Microglia/patologia , Acidente Vascular Cerebral/patologia
18.
ACS Appl Mater Interfaces ; 13(3): 4796-4803, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33448779

RESUMO

Hydrodynamic drag not only results in high-energy consumption for water vehicles but also impedes the increase of vehicle speed. The introduction of a low-viscosity gas lubricating film is assumed to be an effective and promising method to reduce hydrodynamic drag. However, the poor stability of the gas film and massive extra energy consumption restricts the practical application of the gas lubricating method. Herein, inspired by the microhairs with low surface energy wax covering the abdomen of water spiders, superhydrophobic sphere surfaces were designed. Attributed to numerous neighboring nanoneedle branches with low surface energy chemicals, an air-entrained cavity with a large surface area was captured and stabilized by the superhydrophobic sphere, changing its shape from a sphere to a streamlined body. The cavity continued attaching to the superhydrophobic sphere without bursting at a depth of 70.0-90.0 cm underwater and reduced the hydrodynamic drag by more than 90%. This work provides a simple, cost-effective, and energy-efficient way to stabilize the underwater gas-liquid interface to achieve a reduction in the hydrodynamic drag.

19.
Neurobiol Dis ; 147: 105165, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33166699

RESUMO

Perturbed neuronal Ca2+ homeostasis is implicated in Alzheimer's disease, which has primarily been demonstrated in mice with amyloid-ß deposits but to a lesser and more variable extent in tauopathy models. In this study, we injected AAV to express Ca2+ indicator in layer II/III motor cortex neurons and measured neuronal Ca2+ activity by two photon imaging in awake transgenic JNPL3 tauopathy and wild-type mice. Various biochemical measurements were conducted in postmortem mouse brains for mechanistic insight and a group of animals received two intravenous injections of a tau monoclonal antibody spaced by four days to test whether the Ca2+ dyshomeostasis was related to pathological tau protein. Under running conditions, we found abnormal neuronal Ca2+ activity in tauopathy mice compared to age-matched wild-type mice with higher frequency of Ca2+ transients, lower amplitude of peak Ca2+ transients and lower total Ca2+ activity in layer II/III motor cortex neurons. While at resting conditions, only Ca2+ frequency was increased. Brain levels of soluble pathological tau correlated better than insoluble tau levels with the degree of Ca2+ dysfunction in tauopathy mice. Furthermore, tau monoclonal antibody 4E6 partially rescued Ca2+ activity abnormalities in tauopathy mice after two intravenous injections and decreased soluble pathological tau protein within the brain. This correlation and antibody effects strongly suggest that the neuronal Ca2+ dyshomeostasis is causally linked to pathological tau protein. These findings also reveal more pronounced neuronal Ca2+ dysregulation in tauopathy mice than previously reported by two-photon imaging that can be partially corrected with an acute tau antibody treatment.


Assuntos
Cálcio/metabolismo , Córtex Motor/metabolismo , Neurônios/metabolismo , Tauopatias/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Homeostase/fisiologia , Humanos , Camundongos , Camundongos Transgênicos , Atividade Motora/fisiologia , Tauopatias/patologia , Proteínas tau/metabolismo
20.
Glia ; 69(3): 638-654, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33095507

RESUMO

Severe peripheral infections induce an adaptive sickness behavior and an innate immune reaction in various organs including the brain. On the long term, persistent alteration of microglia, the brain innate immune cells, is associated with an increased risk of psychiatric disorders. It is thus critical to identify genes and mechanisms controlling the intensity and duration of the neuroinflammation induced by peripheral immune challenges. We tested the hypothesis that the 5-HT2B receptor, the main serotonin receptor expressed by microglia, might represent a valuable candidate. First, we observed that Htr2b-/- mice, knock-out for the 5-HT2B receptor gene, developed, when exposed to a peripheral lipopolysaccharide (LPS) challenge, a stronger weight loss compared to wild-type mice; in addition, comparison of inflammatory markers in brain, 4 and 24 hr after LPS injection, showed that Htr2b deficiency leads to a prolonged neuroinflammation. Second, to assess the specific contribution of the microglial 5-HT2B receptor, we investigated the response to LPS of conditional knock-out mice invalidated for Htr2b in microglia only. We found that deletion of Htr2b in microglia since birth is sufficient to cause enhanced weight loss and increased neuroinflammatory response upon LPS injection at adult stage. In contrast, mice deleted for microglial Htr2b in adulthood responded normally to LPS, revealing a neonatal developmental effect. These results highlight the role of microglia in the response to a peripheral immune challenge and suggest the existence of a developmental, neonatal period, during which instruction of microglia through 5-HT2B receptors is necessary to prevent microglia overreactivity in adulthood.


Assuntos
Comportamento de Doença , Microglia , Animais , Lipopolissacarídeos/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Doenças Neuroinflamatórias , Receptor 5-HT2B de Serotonina/genética , Serotonina , Redução de Peso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...