Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38557633

RESUMO

Multi-View clustering has attracted broad attention due to its capacity to utilize consistent and complementary information among views. Although tremendous progress has been made recently, most existing methods undergo high complexity, preventing them from being applied to large-scale tasks. Multi-View clustering via matrix factorization is a representative to address this issue. However, most of them map the data matrices into a fixed dimension, limiting the model's expressiveness. Moreover, a range of methods suffers from a two-step process, i.e., multimodal learning and the subsequent k -means, inevitably causing a suboptimal clustering result. In light of this, we propose a one-step multi-view clustering with diverse representation (OMVCDR) method, which incorporates multi-view learning and k -means into a unified framework. Specifically, we first project original data matrices into various latent spaces to attain comprehensive information and auto-weight them in a self-supervised manner. Then, we directly use the information matrices under diverse dimensions to obtain consensus discrete clustering labels. The unified work of representation learning and clustering boosts the quality of the final results. Furthermore, we develop an efficient optimization algorithm with proven convergence to solve the resultant problem. Comprehensive experiments on various datasets demonstrate the promising clustering performance of our proposed method. The code is publicly available at https://github.com/wanxinhang/OMVCDR.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38648135

RESUMO

Temporal graph learning aims to generate high-quality representations for graph-based tasks with dynamic information, which has recently garnered increasing attention. In contrast to static graphs, temporal graphs are typically organized as node interaction sequences over continuous time rather than an adjacency matrix. Most temporal graph learning methods model current interactions by incorporating historical neighborhood. However, such methods only consider first-order temporal information while disregarding crucial high-order structural information, resulting in suboptimal performance. To address this issue, we propose a self-supervised method called S2T for temporal graph learning, which extracts both temporal and structural information to learn more informative node representations. Notably, the initial node representations combine first-order temporal and high-order structural information differently to calculate two conditional intensities. An alignment loss is then introduced to optimize the node representations, narrowing the gap between the two intensities and making them more informative. Concretely, in addition to modeling temporal information using historical neighbor sequences, we further consider structural knowledge at both local and global levels. At the local level, we generate structural intensity by aggregating features from high-order neighbor sequences. At the global level, a global representation is generated based on all nodes to adjust the structural intensity according to the active statuses on different nodes. Extensive experiments demonstrate that the proposed model S2T achieves at most 10.13% performance improvement compared with the state-of-the-art competitors on several datasets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA