Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 288(Pt 3): 132660, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34715106

RESUMO

Ultrafiltration (UF) is effective in retaining macromolecules during tertiary treatment, but the membrane fouling caused by the effluent organic matter (EfOM) limits its application. This study employed electrochemical oxidation (EO) as a pretreatment method for UF in tertiary treatment to investigate the effects of anode materials on membrane fouling alleviation and EfOM degradation. Compared with the dimensionally stable (DSA) and platinum (Pt) anodes, EO with a boron-doped diamond (BDD) anode exhibited better performances for membrane fouling mitigation due to the higher hydroxyl radical production activity of the BDD anode. It was observed that the current density and electrolysis time were closely related to membrane fouling when using a BDD anode, where increasing the current density or electrolysis time led to a significant improvement of specific flux. The BDD-based pre-oxidation efficiently removed 64% DOC, 76% UV254, and 95% fluorescence organic matter in EfOM, among which the concentrations of DOC and UV254 were positively correlated with the total fouling index (TFI). Meanwhile, 70% SMX in the secondary effluent was removed by the BDD anode. Furthermore, the BDD anode also mitigated membrane fouling by decomposing high molecular weight organic matter into smaller fractions and enhancing the electrostatic repulsion between membrane and EfOM. Therefore, the BDD-based EO process is a promising pretreatment strategy for UF to alleviate membrane fouling and improve the permeate quality.


Assuntos
Diamante , Purificação da Água , Boro , Eletrodos , Eletrólise , Oxirredução , Ultrafiltração
2.
Water Res ; 206: 117761, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34678698

RESUMO

The combined fouling effect prevalent in the nanofiltration (NF) process severely limits its use. In this study, cation exchange membrane (CEM) electrolysis was performed to alleviate NF membrane fouling by controlling interface characteristics. The results revealed that CEM electrolysis (hydraulic retention time with 0.24 or 0.36 h) effectively improved NF membrane permeability by 201%-211% and achieved a stability of > 8 LMH/bar. The divalent cations were removed through CEM electrolysis, with a decrease in Ca2+ and Mg2+ by approximately 68.8% and 30.9%, respectively, which was related to scaling potential reduction. This softening function reduced the possibility of bridging of organics with divalent cations, which contributed to the lower molecular weight of organic matter (mainly humic substances) distributed in 1.4-23 kDa. The improved organic indicators of the NF membrane permeate quality implied that the membrane interface characteristics improved. The foulant layer on the NF membrane dominated humic substances, and biopolymers exhibited hydrophobic, smooth, and porous characteristics. The self-aggregation of foulants on the NF membrane surface stimulated the interface characteristics with high water permeability. Energy consumption confirmed the feasibility of CEM electrolysis on NF application. Thus, CEM electrolysis as a chemical-free approach that can be combined with NF and can provide guidance for NF membrane fouling in urban water treatment and water reclamation.


Assuntos
Ultrafiltração , Purificação da Água , Cátions , Eletrólise , Estudos de Viabilidade , Membranas Artificiais
3.
Environ Sci Technol ; 54(10): 6365-6374, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32324400

RESUMO

Traditional polyamide-based interfacial polymerized nanofiltration (NF) membranes exhibit upper bound features between water permeance and salt selectivity. Breaking the limits of the permeability and rejections of these composite NF membranes are highly desirable for water desalination. Herein, a high-performance NF membrane (TFC-P) was fabricated via interfacial polymerization on the poly(vinyl alcohol) (PVA) interlayered poly(ether sulfone) (PES) ultrafiltration support. Owing to the large surface area, great hydrophilicity, and high porosity of the PES-PVA support, a highly cross-linked polyamide separating layer was formed with a thickness of 9.6 nm, which was almost 90% thinner than that of the control membrane (TFC-C). In addition, the TFC-P possessed lower ζ-potential, smaller pore size, and greater surface area compared to that of the TFC-C, achieving an ultrahigh water permeance of 31.4 L m-2 h-1 bar-1 and a 99.4% Na2SO4 rejection. Importantly, the PVA interlayer strategy was further applied to a pilot NF production line and the fabricated membranes presented stable water flux and salt rejections as comparable to the lab-scaled membranes. The outstanding properties of the PVA-interlayered NF membranes highlight the feasibility of the fabrication method for practical applications, which provides a new avenue to develop robust polyamide-based NF desalination membranes for environmental water treatment.


Assuntos
Membranas Artificiais , Nylons , Interações Hidrofóbicas e Hidrofílicas , Álcool de Polivinil , Cloreto de Polivinila
4.
J Colloid Interface Sci ; 571: 155-165, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32199268

RESUMO

High-performance nanofiltration (NF) membranes with simultaneously improved antifouling and separation performance are of great significance for environmental water purification. In this work, a high-performance thin-film composite (TFC) NF membrane (TFC-Ca) was constructed through in-situ incorporation of calcium bicarbonate during interfacial reaction. The surface morphology and chemical structure of the TFC-Ca membrane were systematically investigated by FTIR, XPS, AFM, and SEM. The results indicated that the surface characteristics of the pristine NF membrane were greatly changed by the incorporation of calcium bicarbonate. The TFC-Ca membrane exhibited improved hydrophilicity, narrowed pore size, declined negative charge, and increased surface area. Compared to the control membrane, the TFC-Ca membrane possessed a much greater water permeability and higher molecule rejections. For the TFC-Ca membrane, an optimized water permeance of 13.4 ± 0.3 L m-2 h-1 bar-1 with 99.9% Na2SO4 rejection was obtained. Impressively, the TFC-Ca membrane exhibited excellent antifouling performance during 5 cycles of humic acid fouling tests. A satisfactory flux recovery up to 90.0% was achieved after physical cleaning for the optimized membrane. Furthermore, the TFC-Ca membrane also presented superior performance stability when treated with strong acid and chelating agents for 7 days. Overall, this facile preoccupation strategy via in-situ incorporation of calcium bicarbonate allows the fabrication of high-performance TFC membranes with outstanding separation and antifouling properties.

5.
Water Res ; 175: 115695, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32172057

RESUMO

Nanofiltration (NF) is extensively applied after coagulation, which is conducive to alleviate organic fouling on NF membranes and improve water purification performance. However, inorganic fouling, which remains the major obstacle to limit the wider application of NF, could be enhanced by even low dosage coagulant. Few researchers realize the existence of coagulant-enhanced scaling, much less control it. This study investigated the effects of pH values on ferric-coagulant-influenced membrane performance during the nanofiltration of brackish water. Both membrane flux behavior (initial membrane flux, normalized flux during filtration, scaling resistance and scaling composition) and ion interception (filtrate conductivity and ions removal) were considered. Solution properties (zeta potential and nanoparticle size) were measured, and coagulant speciation variation was stimulated by Visual MINTEQ software. Mechanisms of ferric-coagulant-influenced membrane performance were analyzed from two aspects on the basis of correlation analyses: interface interaction on membrane surface and salts crystallization process (bulk crystallization and surface crystallization). Results showed that both bulk crystallization in feed solution and surface crystallization on membrane surface were dramatically induced by coagulant. Coagulant-enhanced fouling layer resistance decreased after the initial increase when pH varied from 3.0 to 10.0. Fe(OH)3, a kind of active ingredients in ferric coagulant, was highly responsible for the enhanced scaling layer resistance. Coagulant was found improving ionic removal under acidic conditions despite the fact that it could worsen removal under alkaline conditions. This study is of valuable reference to figure out the mechanisms of coagulant-influenced membrane performance and find a feasible approach to avoid membrane deterioration in coagulant-influenced NF process.


Assuntos
Sulfato de Cálcio , Purificação da Água , Filtração , Concentração de Íons de Hidrogênio , Íons , Membranas Artificiais
6.
Water Res ; 171: 115370, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31864131

RESUMO

This study investigated the fouling and scaling behaviors in a capacitive deionization (CDI) system in the presence of iron and natural organic matter (NOM). It was found that the salt adsorption capacity (SAC) significantly decreased when treating Fe-containing brackish water, with higher Fe concentrations leading to severer SAC reduction. Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) analysis demonstrated that Fe2O3 appeared to be the predominant foulant attached on the electrode surface, which was difficult to be removed via backwashing, indicating the irreversible property of the foulant. Further characterizations (e.g., N2 sorption-desorption isotherms, electrochemical impedance spectroscopy and cyclic voltammetry) revealed that the CDI electrodes suffered from obvious deterioration such as specific surface area loss, resistance increase and capacitance decline with the occurrence of Fe scaling. While the presence of NOM alleviated the Fe scaling through NOM-Fe complexing effects, NOM itself was found to have negative impacts on CDI desalination performance due to their strong interactions with the carbon electrodes.


Assuntos
Ferro , Purificação da Água , Adsorção , Capacitância Elétrica , Eletrodos
7.
ACS Appl Mater Interfaces ; 11(39): 35720-35728, 2019 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-31529967

RESUMO

An ordered mesoporous perovskite, La2CoMnO6-δ (MLCMO), was synthesized for the first time using a facile method of evaporation-induced self-assembly. The N2-sorption, scanning electron microscopy, and transmission electron microscopy measurements indicated that the optimized MLCMO possessed a high specific surface area (58.7 m2/g) and was uniformly mesoporous (11.6 nm). The MLCMO exhibited superior catalytic performance in peroxymonosulfate (PMS) activation for atrazine (ATZ) degradation. From a comparison view, the catalytic activity of the mesoporous MLCMO outperformed that of the bulk La2CoMnO6-δ (LCMO) and other common PMS activators, including α-MnO2, Co3O4, and CoFe2O4. The mechanisms of PMS activation by the MLCMO were investigated by X-ray photoelectron spectroscopy, electron spin resonance, and quenching tests. SO4•-, •OH, 1O2, and O2•- were identified as main reactive oxygen species generated from PMS activation. The Co and Mn in MLCMO were the active sites responsible for active radical generation. The lattice oxygen reversible redox sites (OL-/OL2-), which were involved in the electron transfer of the MnIII/MnIV cycle, were demonstrated as redox partners to the cation active sites. In addition, the SO4•-/•OH radical conversion was promoted at pH 11, which accelerated the consumption of PMS and seriously inhibited the degradation of ATZ.

8.
ACS Appl Mater Interfaces ; 11(23): 21137-21149, 2019 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-31119932

RESUMO

A high-performance nanofiltration (NF) membrane with simultaneously improved desalination and antifouling properties while maintaining regeneration ability is highly desirable in water treatment. Surface modification is an effective approach to enhance the performance of NF membranes. In the present study, a multifunctional thin-film composite NF membrane (Fe-TFC) was fabricated via coating a regenerable ferric ion-tannic acid (FeIII-TA) layer on the nascent polyamide membrane surface. The Fe-TFC membrane exhibited enhanced hydrophilicity, smaller pore size, and lower negative charge compared with the control membrane. The salt rejections and selectivity of divalent to monovalent ions were greatly improved with only a slight decrease in water permeability due to the presence of the coating layer. Meanwhile, dynamic fouling tests with humic acid demonstrated that the Fe-TFC membrane possessed an enhanced antifouling property and excellent flux recovery rate. After coating, the normalized water flux and flux recovery of the Fe-TFC membrane increased from 0.02 to 0.26 and 32.1 to 76.4% at the end of five cycles of fouling tests, respectively. In addition, the resultant membrane exhibited excellent durability and stability under harsh conditions for ∼10 days. Interestingly, the fouled coating layer can be easily removed by HCl cleaning and regenerated through an in situ strategy. Consequently, the regenerated membranes presented stable antifouling properties and desalination performance after several times of regeneration. It was demonstrated that the unique feature of FeIII-TA networks enables the coating layer to act as a protective layer for the underlying polyamide membrane, leading to the high performance of the composite membrane. This study provides a new insight for surface functionalization and easy regeneration of the TFC nanofiltration membrane in water treatment technology.

9.
Environ Sci Pollut Res Int ; 26(33): 33827-33837, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29948687

RESUMO

To investigate how the organic fouling layers on nanofiltration (NF) membrane surface and the strong matrix effect (particularly by Ca2+) influence the rejection of trace organic compounds (TOrCs), filtration experiments with two TOrCs, bisphenol A (BPA) and sulfamethazine (SMT), were carried out with virgin and organic-fouled NF membrane. Organic fouling layer on the membrane was induced by sodium alginate (SA) at different concentrations of Ca2+. The results indicated that NF membrane maintained consistently rejection of TOrCs with little influence by membrane fouling at lower Ca2+ concentration. In contrast, organic fouling caused at higher concentration of Ca2+ observably restrained the rejections of both BPA and SMT. Furthermore, based on the cake-enhanced concentration polarization (CECP) model, the rejection of TOrCs was divided to the real rejection and the mass transfer coefficient. Moreover, it was found that the decrease in rejection resulted by organic fouling was due to the real rejection that was restrained by fouling layer with irregular impact on the mass transfer coefficient. Although the mechanism of trace compounds rejection was complex, the controlling factors varied among foulants. Nevertheless, the steric effect of the cake layer played an important role in determining solute rejection by organic-fouled NF membrane.


Assuntos
Filtração/métodos , Purificação da Água/métodos , Alginatos , Compostos Benzidrílicos , Membranas Artificiais , Fenóis
10.
Environ Sci Pollut Res Int ; 26(33): 33770-33780, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29860690

RESUMO

This study investigated the combined effects of coagulation and powdered activated carbon (PAC) adsorption on ultrafiltration (UF) membrane fouling control and subsequent disinfection efficiency through filtration performance, dissolved organic carbon (DOC) removal, fluorescence excitation-emission matrix (EEM) spectroscopy, and disinfectant curve. The fouling behavior of UF membrane was comprehensively analyzed especially in terms of pollutant removal and fouling reversibility to understand the mechanism of fouling accumulation and disinfectant dose reduction. Pre-coagulation with or without adsorption both achieved remarkable effect of fouling mitigation and disinfection dose reduction. The two pretreatments were effective in total fouling control and pre-coagulation combined with PAC adsorption even decreased hydraulically irreversible fouling notably. Besides, pre-coagulation decreased residual disinfectant decline due to the removal of hydrophobic components of natural organic matters (NOM). Pre-coagulation combined with adsorption had a synergistic effect on further disinfectant decline rate reduction and decreased total disinfectant consumption due to additional removal of hydrophilic NOM by PAC adsorption. The disinfectant demand was further reduced after membrane. These results show that membrane fouling and disinfectant dose can be reduced in UF coupled with pretreatment, which could lead to the avoidance of excessive operation cost disinfectant dose for drinking water supply.


Assuntos
Desinfecção , Água Potável , Membranas Artificiais , Purificação da Água/métodos , Adsorção , Carvão Vegetal/química , Filtração , Interações Hidrofóbicas e Hidrofílicas , Ultrafiltração/métodos , Abastecimento de Água
11.
Water Res ; 145: 39-49, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30114556

RESUMO

Algal extracellular organic matter (EOM) released from Microcystis aeruginosa can cause severe membrane fouling during algae-laden water treatment. To solve this problem, three typical sulfate radical-based advanced oxidation processes (SR-AOPs), i.e., ferrous iron/peroxymonosulfate (Fe(II)/PMS), UV/PMS and UV/Fe(II)/PMS, were employed as membrane pretreatment strategies. Their performance on mitigating EOM fouling of a ceramic UF membrane was systematically investigated and compared in the present study. The results indicated that SR-AOPs pretreatments could promote the reduction of DOC and UV254, and the removal performance showed an apparent regularity of UV/Fe(II)/PMS > Fe(II)/PMS > UV/PMS. The pretreatments were very effective for decomposing high-MW biopolymers (>20,000 Da) into low-MW humic substances (1000-20,000 Da), thus reducing the accumulation of high-MW biopolymers on membrane surface. With respect to membrane fouling control, Fe(II)/PMS significantly mitigated both reversible and irreversible membrane fouling, whereas UV/PMS only reduced reversible fouling, and exhibited little effect on irreversible fouling. By contrast, UV/Fe(II)/PMS showed the best performance for fouling reduction due to the synergistic effect of UV and Fe(II) for PMS activation. The dominating fouling mechanism was governed by both pore blockage and cake filtration, likely due to the bimodal MW distribution of EOM, and SR-AOPs pretreatments delayed the transition from pore blockage to cake filtration. In addition, SR-AOPs prior to UF membrane were also very effective to improve the removal of micropollutants (i.e., ATZ, SMT and p-CNB). These results demonstrate the potential application of SR-AOPs as pretreatment for membrane fouling control during algae-laden water treatment.


Assuntos
Ultrafiltração , Purificação da Água , Cerâmica , Membranas Artificiais , Sulfatos
12.
Bioresour Technol ; 268: 139-148, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30077170

RESUMO

A photobioreactor (PBR) coupled with ultrafiltration (UF) system was developed with goals of microalgae cultivation, harvest, and membrane fouling control in the anaerobic digestion effluent purification. Firstly, three-sequencing batch PBRs were started-up with suspended Chlorella vulgaris (C. vulgaris, SCV), immobilized C. vulgaris (ICV) and immobilized C. vulgaris with powdered activated carbon (ICV + PAC). The results exhibited high DOC degradation (66.61%-84.35%) and completely nutrients (nitrogen and phosphorus) removals were attained in PBRs. This indicated bacterial-microalgal consortiums enhanced biodegradation and PAC adsorption accelerated photodegradation. During the microalgae harvest by UF, immobilized microalgae beads protected cells integrity with less debris and intracellular/extracellular organic matters lysis. Moreover, the cake layer in ICV + PAC could even serve as a dynamic layer to entrap the residual pollutants and control membrane fouling. Hence, membrane fouling mitigation and ADE purification were realized during the microalgae harvest process in the ICV + PAC.


Assuntos
Fotobiorreatores , Purificação da Água , Chlorella vulgaris , Membranas Artificiais , Microalgas , Ultrafiltração
13.
Chemosphere ; 191: 253-261, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29035797

RESUMO

Gravity-driven membrane filtration (GDM) is promising for decentralized rainwater recycling, owing to low maintenance and energy consumption. However, the organic removal by GDM process is sometimes undesirable and the quality of the permeate cannot meet the standard of water reuse. To improve this, granular activate carbon (GAC) was added as a particle layer on the membrane surface of GDM system. Additionally, a system with sand addition and a system with no particle addition were trialed as comparisons, to study the combined effects of particle hindering and adsorption on the removal efficacy of organics and the development of permeate flux. Results showed that GDM with a GAC layer improved removal efficiency of organics by 25%, and that GAC enhanced removal of florescent compounds (e.g., aromatic proteins, tryptophan proteins and humics), compared with the other two systems. Additionally, the permeate flux in three systems stabilized after Day 25, and kept stable until the end of the operation. However, the presence of GAC layer decreased the level of stable flux (3.2 L/m2h) compared with the control system (4.5 L/m2h). The factors responsible for the lower flux and severe membrane fouling in GAC layer assisted system were the combined effects of particle and adsorption which led to a denser bio-fouling layer with higher amount of biomass and extracellular polymeric substances contents (proteins and polysaccharides). Resistance distribution analyses revealed that GAC layer mainly increased hydraulically reversible resistance (occupied 93%) of the total resistance, indicating that the flux could be recovered easily by simple physical cleaning.


Assuntos
Filtração/métodos , Membranas Artificiais , Purificação da Água/métodos , Adsorção , Carvão Vegetal , Gravitação , Chuva , Reciclagem , Purificação da Água/instrumentação
14.
Water Res ; 124: 298-307, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28772142

RESUMO

Coagulation and ozonation have been widely used as pretreatments for ultrafiltration (UF) membrane in drinking water treatment. While beneficial, coagulation or ozonation alone is unable to both efficiently control membrane fouling and product water quality in many cases. Thus, in this study an emerging alternative of ferrous iron/peroxymonosulfate (Fe(II)/PMS), which can act as both an oxidant and a coagulant was employed prior to UF for treatment of natural surface water, and compared with conventional coagulation and ozonation. The results showed that the Fe(II)/PMS-UF system exhibited the best performance for dissolved organic carbon removal, likely due to the dual functions of coagulation and oxidation in the single process. The fluorescent and UV-absorbing organic components were more susceptible to ozonation than Fe(II)/PMS treatment. Fe(II)/PMS and ozonation pretreatments significantly increased the removal efficiency of atrazine, p-chloronitrobenzene and sulfamethazine by 12-76% and 50-94%, respectively, whereas coagulation exerted a minor influence. The Fe(II)/PMS pretreatment also showed the best performance for the reduction of both reversible and irreversible membrane fouling, and the performance was hardly affected by membrane pore size and surface hydrophobicity. In addition, the characterization of hydraulic irreversible organic foulants confirmed its effectiveness. These results demonstrate the potential advantages of applying Fe(II)/PMS as a pretreatment for UF to simultaneously control membrane fouling and improve the permeate quality.


Assuntos
Purificação da Água , Compostos Ferrosos , Membranas Artificiais , Ozônio/química , Peróxidos/química , Ultrafiltração , Abastecimento de Água
15.
Chemosphere ; 182: 183-193, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28499179

RESUMO

Membrane fouling has been a main obstacle to the success of ultrafiltration (UF) technology. Recently, fluorescent natural organic matter (FNOM), including humic-like substances (HS) and protein-like substances, has been recognized as substances responsible for membrane fouling. In this study, the matrix of FNOM in natural river water was substantially modified by combined coagulation and powdered activated carbon adsorption to enhance the diversity of the FNOM matrix. Fluorescence excitation emission matrix spectroscopy was employed to characterize FNOM components during the UF process. The correlations between FNOM components of the feedwater and membrane fouling were evaluated for the initial period and long-term operation. Reliable correlations of the maximum fluorescence intensity of HS with initial membrane fouling indicated that HS were major foulants in the initial period. Furthermore, the protein-like component exhibited significant correlation with the concentration effect fouling (R2 = 0.6131) and with irreversible fouling (R2 = 0.8711). We found that the fouling mechanism changed from pore obstruction to a protein concentration polarization layer followed by protein cake layer filtration. Total fouling of the UF membrane over long-term operation was alleviated with powdered activated carbon (PAC) adsorption; however, the mitigation of irreversible fouling was dependent on whether PAC adsorbed protein-like substances.


Assuntos
Substâncias Húmicas , Membranas Artificiais , Ultrafiltração/normas , Adsorção , Carvão Vegetal/química , Corantes , Água Doce/química , Purificação da Água/métodos
16.
Water Res ; 113: 32-41, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28187348

RESUMO

Ferrous iron/peroxymonosulfate (Fe(II)/PMS) oxidation was employed as a pretreatment method for ultrafiltration process to control membrane fouling caused by natural organic matter, including humic acid (HA), sodium alginate (SA), bovine serum albumin (BSA), and their mixture (HA-SA-BSA). To evaluate the mechanism of fouling mitigation, the effects of Fe(II)/PMS pretreatment on the characteristics of feed water were examined. The degradation of atrazine (ATZ) was also investigated and the species of generated radicals were preliminarily determined. Under the test exposure (15 and 50 µM), Fe(II)/PMS pretreatment effectively mitigated membrane fouling caused by HA, SA and HA-SA-BSA mixture, and the performance improved with the increase of Fe(II) or PMS dose; whereas aggravated BSA fouling at lower doses and fouling alleviation was observed only at a higher dose (50/50 µΜ). The fouling mitigation was mainly attributed to the effective reduction of organic loadings by coagulation with in-situ formed Fe(III). Its performance was comparable or even slightly higher than single coagulation with Fe(III), most likely due to the oxidation by Fe(II)/PMS process. Fe(II)/PMS oxidation showed better performance in reducing DOC and UV254, fluorescence intensities of fluorescent components and UV-absorbing compounds than single coagulation. In addition, Fe(II)/PMS pretreatment was efficient in ATZ degradation due to the generation of sulfate and hydroxyl radicals, whereas coagulation was ineffective to remove it.


Assuntos
Atrazina , Ultrafiltração , Cerâmica , Compostos Férricos , Ferro , Membranas Artificiais , Purificação da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...