Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 15: 1429247, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39040080

RESUMO

Reprograming of the dental pulp somatic cells to endothelial cells is an attractive strategy for generation of new blood vessels. For tissue regeneration, vascularization of engineered constructs is crucial to improve repair mechanisms. In this study, we show that dentin matrix protein 1 (DMP1) and HUVEC-ECM scaffold enhances the differentiation potential of dental pulp stem cells (DPSCs) to an endothelial phenotype. Our results show that the differentiated DPSCs expressed endothelial markers CD31 and VE-Cadherin (CD144) at 7 and 14 days. Expression of CD31 and VE-Cadherin (CD144) were also confirmed by immunofluorescence. Furthermore, flow cytometry analysis revealed a steady increase in CD31 and VE-Cadherin (CD144) positive cells with DMP1 treatment when compared with control. In addition, integrins specific for endothelial cells were highly expressed during the differentiation process. The endothelial cell signature of differentiated DPSCs were additionally characterized for key endothelial cell markers using gene expression by RT-PCR, Western blotting, immunostaining, and RNA-seq analysis. Furthermore, the angiogenic phenotype was confirmed by tubule and capillary sprout formation. Overall, stimulation of DPSCs by DMP1 and use of HUVEC-ECM scaffold promoted their differentiation into phenotypically, transcriptionally, and functionally differentiated bonafide endothelial cells. This study is novel, physiologically relevant and different from conventional strategies.

2.
Biomolecules ; 13(3)2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36979349

RESUMO

Eukaryotic initiation factor subunit I (EIF3i), also called as p36 or TRIP-1, is a component of the translation initiation complex and acts as a modulator of TGF-ß signaling. We demonstrated earlier that this intracellular protein is not only exported to the extracellular matrix via exosomes but also binds calcium phosphate and promotes hydroxyapatite nucleation. To assess other functional roles of TRIP-1, we first examined their phylogeny and showed that it is highly conserved in eukaryotes. Comparing human EIF3i sequence with that of 63 other eukaryotic species showed that more than 50% of its sequence is conserved, suggesting the preservation of its important functional role (translation initiation) during evolution. TRIP-1 contains WD40 domains and predicting its function based on this structural motif is difficult as it is present in a vast array of proteins with a wide variety of functions. Therefore, bioinformatics analysis was performed to identify putative regulatory functions for TRIP-1 by examining the structural domains and post-translational modifications and establishing an interactive network using known interacting partners such as type I collagen. Insight into the function of TRIP-1 was also determined by examining structurally similar proteins such as Wdr5 and GPSß, which contain a ß-propeller structure which has been implicated in the calcification process. Further, proteomic analysis of matrix vesicles isolated from TRIP-1-overexpressing preosteoblastic MC3T3-E1 cells demonstrated the expression of several key biomineralization-related proteins, thereby confirming its role in the calcification process. Finally, we demonstrated that the proteomic signature in TRIP1-OE MVs facilitated osteogenic differentiation of stem cells. Overall, we demonstrated by bioinformatics that TRIP-1 has a unique structure and proteomic analysis suggested that the unique osteogenic cargo within the matrix vesicles facilitates matrix mineralization.


Assuntos
Osteogênese , Proteômica , Humanos , Colágeno Tipo I/metabolismo , Fator de Iniciação 3 em Eucariotos/metabolismo , Matriz Extracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Animais
3.
Sci Rep ; 11(1): 22076, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34764323

RESUMO

Dentin phosphophoryn synthesized and processed predominantly by the odontoblasts, functions as both structural and signaling protein. Mechanistic studies revealed that DPP stimulation of DPSCs positively impacted the differentiation of DPSCs into functional odontoblasts. Results show that NF-κB signaling and transcriptional activation of genes involved in odontoblast differentiation were influenced by DPP signaling. Specifically, RelA/p65 subunit of NF-κB was identified as being responsible for the initiation of the differentiation cascade. Confocal imaging demonstrated the nuclear translocation of p65 with DPP stimulation. Moreover, direct binding of nuclear NF-κB p65 subunit to the promoter elements of Runx2, Osx, OCN, MMP1, MMP3, BMP4 and PTX3 were identified by ChIP analysis. Pharmacological inhibition of the NF-κB pathway using TPCA-1, a selective inhibitor of IKK-2 and JSH-23, an inhibitor that prevents nuclear translocation and DNA binding of p65 showed impairment in the differentiation process. Functional studies using Alizarin-Red staining showed robust mineral deposits with DPP stimulation and sparse deposition with defective odontoblast differentiation in the presence of inhibitors. In vivo expression of NF-κB targets such as OSX, OCN, PTX3 and p65 in odontoblasts and dental pulp cells from DSPP null mouse was lower when compared with the wild-type. Overall, the results suggest an important role for DPP-mediated NF-κB activation in the transcriptional regulation of early odontogenic markers that promote differentiation of DPSCs.


Assuntos
Proteínas da Matriz Extracelular/metabolismo , NF-kappa B/metabolismo , Odontogênese , Fosfoproteínas/metabolismo , Sialoglicoproteínas/metabolismo , Transdução de Sinais , Animais , Diferenciação Celular , Células Cultivadas , Polpa Dentária/citologia , Polpa Dentária/metabolismo , Proteínas da Matriz Extracelular/genética , Camundongos , Camundongos Knockout , Fosfoproteínas/genética , Sialoglicoproteínas/genética , Células-Tronco/citologia , Células-Tronco/metabolismo
4.
J Immunol ; 202(8): 2493-2501, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30842275

RESUMO

The limited number of hematopoietic stem cells (HSC) within a single unit of human cord blood currently limits its use as an alternate graft source. However, we have developed a strategy using 5-aza-2'-deoxycytidine (5azaD) and trichostatin A (TSA), which expands transplantable HSC 7- to 10-fold. In our current studies, we have assessed the allostimulatory capacity of the 5azaD/TSA-expanded grafts. The coexpression of immunophenotypic dendritic cell (DC) markers, such as HLA-DR/CD86 and HLA-DR/CD11c as determined by flow cytometry, and the allostimulatory capacity of 5azaD/TSA-expanded cells as determined by MLC were both significantly lower than control. It has been previously demonstrated that STAT3 is indispensable for the differentiation of DC from HSC. Real-time quantitative PCR analysis revealed that 5azaD/TSA-expanded cells expressed more STAT3 transcript than control while also expressing increased transcripts for STAT3 inhibitors including SHP1, p21, and GATA1. Western blot analysis indicates that chromatin-modifying agent-expanded grafts displayed a reduced ratio of p-STAT3 to total STAT3 than control cultures, which is likely indicative of STAT3 inactivity in 5azD/TSA-expanded grafts. Culturing 5azaD/TSA-expanded cord blood cells in extended cultures reveals that they are still capable of generating DC. Notably, STAT3 inactivity was transient because the transcript levels of STAT3 and its inhibitors, including SHP1, were comparable between 5azaD/TSA and control cultures following extended culture. Taken together, our studies indicate that the reduced allostimulatory capacity of 5azaD/TSA-expanded cells is likely because of reversible inhibition of STAT3-dependent DC differentiation. These results suggest that a graft composed of 5azaD/TSA-expanded cells possesses relatively less allostimulatory response but is still capable of generating DC in permissive conditions.


Assuntos
Antígenos de Diferenciação/imunologia , Cromatina/imunologia , Decitabina/farmacologia , Sangue Fetal/imunologia , Células-Tronco Hematopoéticas/imunologia , Ácidos Hidroxâmicos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/imunologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Células-Tronco Hematopoéticas/citologia , Humanos
5.
PLoS One ; 7(8): e43671, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22916295

RESUMO

BACKGROUND: Inhibitor of Growth (ING) proteins are epigenetic "readers" that recognize trimethylated lysine 4 of histone H3 (H3K4Me3) and target histone acetyl transferase (HAT) and histone deacetylase (HDAC) complexes to chromatin. METHODS AND PRINCIPAL FINDINGS: Here we asked whether dysregulating two epigenetic pathways with chemical inhibitors showed synergistic effects on breast cancer cell line killing. We also tested whether ING1 could synergize better with chemotherapeutics that target the same epigenetic mechanism such as the HDAC inhibitor LBH589 (Panobinostat) or a different epigenetic mechanism such as 5-azacytidine (5azaC), which inhibits DNA methyl transferases. Simultaneous treatment of breast cancer cell lines with LBH589 and 5azaC did not show significant synergy in killing cells. However, combination treatment of ING1 with either LBH589 or 5azaC did show synergy. The combination of ING1b with 5azaC, which targets two distinct epigenetic mechanisms, was more effective at lower doses and enhanced apoptosis as determined by Annexin V staining and cleavage of caspase 3 and poly-ADP-ribose polymerase (PARP). ING1b plus 5azaC also acted synergistically to increase γH2AX staining indicating significant levels of DNA damage were induced. Adenoviral delivery of ING1b with 5azaC also inhibited cancer cell growth in a murine xenograft model and led to tumor regression when viral concentration was optimized in vivo. CONCLUSIONS: These data show that targeting distinct epigenetic pathways can be more effective in blocking cancer cell line growth than targeting the same pathway with multiple agents, and that using viral delivery of epigenetic regulators can be more effective in synergizing with a chemical agent than using two chemotherapeutic agents. This study also indicates that the ING1 epigenetic regulator may have additional activities in the cell when expressed at high levels.


Assuntos
Azacitidina/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/terapia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Antimetabólitos Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Feminino , Humanos , Ácidos Hidroxâmicos/uso terapêutico , Indóis/uso terapêutico , Proteína 1 Inibidora do Crescimento , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Camundongos SCID , Proteínas Nucleares/genética , Panobinostat , Proteínas Supressoras de Tumor/genética , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA