Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 14(8)2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-36015189

RESUMO

Immunogenic cell death (ICD) is a modality of regulated cell death that is sufficient to promote an adaptive immune response against antigens of the dying cell in an immunocompetent host. An important characteristic of ICD is the release and exposure of damage-associated molecular patterns, which are potent endogenous immune adjuvants. As the induction of ICD can be achieved with conventional cytotoxic agents, it represents a potential approach for the immunotherapy of cancer. Here, different aspects of ICD in cancer biology and treatment are reviewed.

2.
Pharmaceutics ; 14(1)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35057091

RESUMO

Photodynamic therapy (PDT) has been clinically employed to treat mainly superficial cancer, such as basal cell carcinoma. This approach can eliminate tumors by direct cytotoxicity, tumor ischemia, or by triggering an immune response against tumor cells. Among the immune-related mechanisms of PDT, the induction of immunogenic cell death (ICD) in target cells is to be cited. ICD is an apoptosis modality distinguished by the emission of damage-associated molecular patterns (DAMP). Therefore, this study aimed to analyze the immunogenicity of CT26 and 4T1 treated with PDT mediated by aluminum-phthalocyanine in nanoemulsion (PDT-AlPc-NE). Different PDT-AlPc-NE protocols with varying doses of energy and AlPc concentrations were tested. The death mechanism and the emission of DAMPs-CRT, HSP70, HSP90, HMGB1, and IL-1ß-were analyzed in cells treated in vitro with PDT. Then, the immunogenicity of these cells was assessed in an in vivo vaccination-challenge model with BALB/c mice. CT26 and 4T1 cells treated in vitro with PDT mediated by AlPc IC50 and a light dose of 25 J/cm2 exhibited the hallmarks of ICD, i.e., these cells died by apoptosis and exposed DAMPs. Mice injected with these IC50 PDT-treated cells showed, in comparison to the control, increased resistance to the development of tumors in a subsequent challenge with viable cells. Mice injected with 4T1 and CT26 cells treated with higher or lower concentrations of photosensitizer and light doses exhibited a significantly lower resistance to tumor development than those injected with IC50 PDT-treated cells. The results presented in this study suggest that both the photosensitizer concentration and light dose affect the immunogenicity of the PDT-treated cells. This event can affect the therapy outcomes in vivo.

3.
Nanomedicine (Lond) ; 17(3): 167-179, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35048742

RESUMO

Aim: To develop a new curcumin carrier consisting of murumuru butter nanoparticles (SLN-Cs). Methods: A phase-inversion temperature method was used to produce SLN-Cs. The interaction of SLN-Cs with murine colon adenocarcinoma (CT26) cells in vitro was analyzed by confocal microscopy. Results: Stable SLN-Cs with a high curcumin-loading capacity were obtained. The SLN-Cs were more toxic to CT26 than free curcumin. Fluorescence microscopy images showed the SLN-Cs to be taken up by CT26 cells in vitro. Conclusion: These results indicate that SLN-Cs are suitable carriers of curcumin in aqueous media.


Assuntos
Curcumina , Nanopartículas , Animais , Portadores de Fármacos , Lipídeos , Lipossomos , Camundongos , Nanopartículas/toxicidade , Tamanho da Partícula
4.
J Photochem Photobiol B ; 204: 111808, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32006892

RESUMO

Photodynamic therapy (PDT) is effective in the treatment of different types of cancer, such as basal cell carcinoma and other superficial cancers. However, improvements in photosensitizer delivery are still needed, and the use of PDT against more deeply located tumors has been the subject of many studies. Thus, the goal of this study was to evaluate the efficacy of a nanoemulsion containing aluminium-phthalocyanine (AlPc-NE) as a mediator of photodynamic therapy (PDT-AlPc-NE) against grafted 4T1 breast adenocarcinoma tumors in mice (BALB/c). Short after the appearance of the tumor, the animals were divided into groups (n = 5) as follows: untreated; only AlPc-NE and treated with PDT-AlPc-NE. The tumor volume was measured with a digital calliper at specific times. The presence of metastasis in the lungs was evaluated by microtomography and histopathological analyses. The results show that the application of PDT-AlPc-NE eradicated the transplanted tumors in all the treated animals, while the animals from control groups presented a robust increase in the tumor volume. Still more significantly, microtomography showed the animals submitted the PDT-AlPc-NE to be free of detectable metastasis in the lungs. The histological analysis of the lungs further confirmed the results verified by the microtomography. Therefore, this study suggests that PDT-AlPc-NE is effective in the elimination of experimentally grafted breast tumors in mice and also in preventing the formation of metastasis in the lungs.


Assuntos
Adenocarcinoma/tratamento farmacológico , Alumínio/química , Neoplasias da Mama/tratamento farmacológico , Indóis/química , Neoplasias Pulmonares/tratamento farmacológico , Nanoestruturas/química , Fármacos Fotossensibilizantes/uso terapêutico , Adenocarcinoma/diagnóstico por imagem , Adenocarcinoma/patologia , Animais , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Feminino , Isoindóis , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/secundário , Camundongos , Camundongos Endogâmicos BALB C , Nanoestruturas/uso terapêutico , Nanoestruturas/toxicidade , Fotoquimioterapia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Transplante Homólogo , Microtomografia por Raio-X
5.
J Mater Chem B ; 7(41): 6390-6398, 2019 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-31642844

RESUMO

The aim of this work was to develop and test the in vitro biological activity of nanocapsules loaded with a doxorubicin (DOX) free base dissolved in a core of castor oil shelled by poly(methyl vinyl ether-co-maleic anhydride) conjugated to n-octadecylamine residues. This system was stable and monodisperse, with a hydrodynamic diameter of about 300 nm. These nanocapsules changed the intracellular distribution of DOX, from the nuclei to the cytoplasm, and exhibited higher toxicity towards cancer cells - 4T1 and MCF-7 - and significantly lower toxicity towards normal cells - NIH-3T3 and MCF-10A - in vitro. In conclusion, these nanocapsules are suitable DOX carriers, which remain to be studied in in vivo tumor models.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Doxorrubicina/metabolismo , Portadores de Fármacos/química , Nanocápsulas/química , Animais , Neoplasias da Mama/patologia , Óleo de Rícino , Linhagem Celular , Linhagem Celular Tumoral , Núcleo Celular , Citoplasma , Doxorrubicina/toxicidade , Portadores de Fármacos/normas , Humanos , Células MCF-7 , Camundongos , Células NIH 3T3
6.
Artif Cells Nanomed Biotechnol ; 46(sup2): 1046-1052, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29842818

RESUMO

Nanocapsules containing selol and doxorubicin (NCS-DOX) with an oily core of selol and a shell of poly(methyl vinyl ether-co-maleic anhydride) covalently conjugated to doxorubicin were developed in a previous work. In this study, these nanocapsules showed a similar antitumour effect in comparison to the free doxorubicin (DOX) treatment, but showed no evident DOX-related cardiotoxicity, as evidenced by serum creatine kinase-MB (CK-MB) activity. The histopathological analysis showed that the free DOX treatment induced more intense morphological damage to myocardial tissues in comparison to NCS-DOX treatment. Animals treated with free DOX presented important muscle fibre degradation and animals treated with NCS-DOX, heart tissue did not present signals of muscle fibre degeneration. These results indicate that the cardiotoxicity related to DOX is reduced when this drug is carried by the NCS-DOX. Noteworthy, biodistribution analyses showed that NCS-DOX accumulated more intensely in tumours than the free DOX. Thus, this study reinforces the importance of the development of nanocapsules as drug carriers for the treatment of cancer.


Assuntos
Adenocarcinoma/tratamento farmacológico , Neoplasias da Mama/tratamento farmacológico , Doxorrubicina/química , Doxorrubicina/farmacologia , Maleatos/química , Nanocápsulas/química , Polietilenos/química , Compostos de Selênio/química , Animais , Linhagem Celular Tumoral , Doxorrubicina/efeitos adversos , Doxorrubicina/farmacocinética , Feminino , Coração/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
7.
PLoS One ; 13(5): e0196667, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29750792

RESUMO

Schistosomiasis is a disease caused by parasites of the genus Schistosoma, currently affecting more than 200 million people. Among the various species of this parasite that infect humans, S. mansoni is the most common. Pharmacological treatment is limited to the use of a single drug, praziquantel (PZQ), despite reports of parasite resistance and low efficacy. It is therefore necessary to investigate new potential schistosomicidal compounds. In this study, we tested the efficacy of epiisopilosine (EPIIS) in a murine model of schistosomiasis. A single dose of EPIIS (100 or 400 mg/kg) administered orally to mice infected with adult S. mansoni resulted in reduced worm burden and egg production. The treatment with the lower dose of EPIIS (100 mg/kg) significantly reduced total worm burden by 60.61% (P < 0.001), as well as decreasing hepatosplenomegaly and egg excretion. Scanning electron microscopy revealed morphological changes in the worm tegument after treatment. Despite good activity of EPIIS in adult S. mansoni, oral treatment with single dose of EPIIS 100 mg/kg had only moderate effects in mice infected with juvenile S. mansoni. In addition, we performed cytotoxicity and toxicological studies with EPIIS and found no in vitro cytotoxicity (in HaCaT, and NIH-3T3 cells) at a concentration of 512 µg/mL. We also performed in silico analysis of toxicological properties and showed that EPIIS had low predicted toxicity. To confirm this, we investigated systemic acute toxicity in vivo by orally administering a 2000 mg/kg dose to Swiss mice. Treated mice showed no significant changes in hematological, biochemical, or histological parameters compared to non-treated animals. Epiisopilosine showed potential as a schistosomicidal drug: it did not cause acute toxicity and it displayed an acceptable safety profile in the animal model.


Assuntos
Alcaloides/farmacologia , Schistosoma mansoni/efeitos dos fármacos , Esquistossomose mansoni/tratamento farmacológico , Animais , Linhagem Celular , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Células NIH 3T3 , Contagem de Ovos de Parasitas/métodos , Praziquantel/farmacologia , Esquistossomose mansoni/parasitologia , Esquistossomicidas/farmacologia
8.
J Nanosci Nanotechnol ; 18(1): 522-528, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29768877

RESUMO

Due to the low therapeutic index of different chemotherapeutic drugs used for cancer treatment, the development of new anticancer drugs remains an intense field of research. A recently developed mixture of selenitetriacylglycerides, selol, was shown to be active against different cancer cells in vitro. As this compound is highly hydrophobic, it was encapsulated, in a previous study, into poly(methyl vinyl ether-co-maleic anhydride)-shelled nanocapsules in order to improve its dispersibility in aqueous media. Following this line of research, the present report aimed at enhancing the In Vitro activity of the selol nanocapsules against cancerous cells by decorating their surface with folic acid. It is known that several cancer cells overexpress folate receptors. Stable folic acid-decorated selol nanocapsules (SNP-FA) were obtained, which showed to be spherical, with a hydro-dynamic diameter of 364 nm, and zeta potential of -24 mV. In comparison to non-decorated selol nanocapsules, SNP-FA presented higher activity against 4T1, MCF-7 and HeLa cells. Moreover, the decoration of the nanocapsules did not alter their toxicity towards fibroblasts, NIH-3T3 cells. These results show that the decoration with folic acid increased the toxicity of selol nanocapsules to cancer cells. These nanocapsules, besides enabling to disperse selol in an aqueous medium, increased the toxicity of this drug In Vitro, and may be useful to treat cancer in vivo, potentially increasing the specificity of selol towards cancer cells.


Assuntos
Nanocápsulas , Neoplasias , Compostos de Selênio , Animais , Linhagem Celular Tumoral , Ácido Fólico , Células HeLa , Humanos , Maleatos , Camundongos , Neoplasias/tratamento farmacológico , Polietilenos
9.
Artif Cells Nanomed Biotechnol ; 46(8): 2002-2012, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29179603

RESUMO

Nanocapsules (NCS-DOX) with an oily core of selol and a shell of poly(methyl vinyl ether-co-maleic anhydride) covalently conjugated to doxorubicin were developed. These nanocapsules are spherical, with an average hydrodynamic diameter of about 170 nm, and with negative zeta potential. NCS-DOX effectively co-delivered the selol and the doxorubicin into 4T1 cells and changed the intracellular distribution of DOX from the nuclei to the mitochondria. Moreover, a significantly increased cytotoxicity against 4T1 cells was observed, which is suggestive of additive or synergic effect of selol and doxorubicin. In conclusion, PVM/MA nanocapsules are suitable platforms to co-deliver drugs into cancer cells.


Assuntos
Adenocarcinoma/tratamento farmacológico , Doxorrubicina , Neoplasias Mamárias Animais/tratamento farmacológico , Nanocápsulas , Compostos de Selênio , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Animais , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Núcleo Celular/patologia , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/farmacologia , Feminino , Neoplasias Mamárias Animais/metabolismo , Neoplasias Mamárias Animais/patologia , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Células NIH 3T3 , Nanocápsulas/química , Nanocápsulas/uso terapêutico , Compostos de Selênio/química , Compostos de Selênio/farmacocinética , Compostos de Selênio/farmacologia
10.
Mini Rev Med Chem ; 17(3): 224-236, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27739361

RESUMO

Nanotechnology has provided powerful tools to improve the chemotherapy of cancer. Different nanostructures have been developed which deliver the anticancer drugs more selectively to tumor than to healthy tissues. The result has generally been the increase in efficacy and safety of classical anticancer drugs. In recent years, several studies have focused not only on the delivery of anticancer drugs to tumors, but also on delivering the drugs to specific organelles of cancer cells. Endoplasmic reticulum, Golgi apparatus, lysosomes, mitochondria, and nucleus have been the targets of different nanostructured drug delivery systems developed with the goal of circumventing drugresistance, increasing drug efficacy, and so on. So far, the results described in the literature show that this strategy may be used to improve chemotherapy outcomes. In this review a discussion is presented on the strategies described in the literature to deliver anticancer drugs to specific organelles of cancer cells by using nanostructures.


Assuntos
Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Sistemas de Liberação de Medicamentos , Nanoestruturas/química , Neoplasias/metabolismo , Neoplasias/patologia , Organelas/metabolismo , Humanos , Nanomedicina , Neoplasias/tratamento farmacológico
11.
J Nanobiotechnology ; 12: 32, 2014 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-25149827

RESUMO

BACKGROUND: Selol is an oily mixture of selenitetriacylglycerides that was obtained as a semi-synthetic compound containing selenite. Selol is effective against cancerous cells and less toxic to normal cells compared with inorganic forms of selenite. However, Selol's hydrophobicity hinders its administration in vivo. Therefore, the present study aimed to produce a formulation of Selol nanocapsules (SPN) and to test its effectiveness against pulmonary adenocarcinoma cells (A549). RESULTS: Nanocapsules were produced through an interfacial nanoprecipitation method. The polymer shell was composed of poly(methyl vinyl ether-co-maleic anhydride) (PVM/MA) copolymer. The obtained nanocapsules were monodisperse and stable. Both free Selol (S) and SPN reduced the viability of A549 cells, whereas S induced a greater reduction in non-tumor cell viability than SPN. The suppressor effect of SPN was primarily associated to the G2/M arrest of the cell cycle, as was corroborated by the down-regulations of the CCNB1 and CDC25C genes. Apoptosis and necrosis were induced by Selol in a discrete percentage of A549 cells. SPN also increased the production of reactive oxygen species, leading to oxidative cellular damage and to the overexpression of the GPX1, CYP1A1, BAX and BCL2 genes. CONCLUSIONS: This study presents a stable formulation of PVM/MA-shelled Selol nanocapsules and provides the first demonstration that Selol promotes G2/M arrest in cancerous cells.


Assuntos
Adenocarcinoma/tratamento farmacológico , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Maleatos/química , Nanocápsulas/química , Polietilenos/química , Compostos de Selênio/farmacologia , Adenocarcinoma/patologia , Adenocarcinoma/ultraestrutura , Adenocarcinoma de Pulmão , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral/ultraestrutura , Ciclina B1/genética , Relação Dose-Resposta a Droga , Glutationa Peroxidase/genética , Humanos , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/ultraestrutura , Nanoconchas/química , Espécies Reativas de Oxigênio/metabolismo , Compostos de Selênio/administração & dosagem , Compostos de Selênio/química , Termodinâmica , Fosfatases cdc25/genética , Glutationa Peroxidase GPX1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA