Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Heliyon ; 10(10): e31309, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38831820

RESUMO

In the study of photocatalytic and photoactivated processes and devices a tight control on the illumination conditions is mandatory. The practical challenges in the determination of the necessary photonic quantities pose serious difficulties in the characterization of catalytic performance and reactor designs and configurations, compromising an effective comparison between different experiments. To overcome these limitations, we have designed and constructed a new illumination system based in the concept of the integrating sphere (IS). The system provides uniform and isotropic illumination on the sample, either in batch or continuous flow modes, being these characteristics independent of the sample geometry. It allows direct, non-contact and real time determination of the photonic quantities as well as versatile control on the irradiance values and its spectral characteristics. It can be also scaled up to admit samples of different sizes without affecting its operational behaviour. The performance of the IS system has been determined in comparison with a second illumination system, mounted on an optical bench, that provides quasi-parallel beam (QPB) nearly uniform illumination in tightly controlled conditions. System performance is studied using three sample geometries: a standard quartz cuvette, a thin straight tube and a microreactor by means of potassium ferrioxalate actinometry. Results indicate that the illumination geometry and the angular distribution of the incoming light greatly affect the absorption at the sample. The sample light absorption efficiency can be obtained with statistical uncertainties of about 3% and in very good agreement with theoretical estimations.

2.
ChemSusChem ; 17(9): e202301591, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38179896

RESUMO

Molybdenum carbide supported on activated carbon (ß-Mo2C/AC) has been tested as catalyst in the reductive catalytic fractionation (RCF) of lignocellulosic biomass both in batch and in Flow-Through (FT) reaction systems. High phenolic monomer yields (34 wt.%) and selectivity to monomers with reduced side alkyl chains (up to 80 wt.%) could be achieved in batch in the presence of hydrogen. FT-RCF were made with no hydrogen feed, thus via transfer hydrogenation from ethanol. Similar selectivity could be attained in FT-RCF using high catalyst/biomass ratios (0.6) and high molybdenum loading (35 wt.%) in the catalyst, although selectivity decreased with lower catalyst/biomass ratios or molybdenum contents. Regardless of these parameters, high delignification of the lignocellulosic biomass and similar monomer yields were observed in the FT mode (13-15 wt.%) while preserving the holocellulose fractions in the delignified pulp. FT-RCF system outperforms the batch reaction mode in the absence of hydrogen, both in terms of activity and selectivity to reduced monomers that is attributed to the two-step non-equilibrium processes and the removal of diffusional limitations that occur in the FT mode. Even though some molybdenum leaching was detected, the catalytic performance could be maintained with negligible loss of activity or selectivity for 15 consecutive runs.

3.
Small ; 20(6): e2305169, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37797194

RESUMO

Bacterial infections are a public health threat of increasing concern in medical care systems; hence, the search for novel strategies to lower the use of antibiotics and their harmful effects becomes imperative. Herein, the antimicrobial performance of four polyoxometalate (POM)-stabilized gold nanoparticles (Au@POM) against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) as Gram-negative and Gram-positive bacteria models, respectively, is studied. The bactericidal studies performed, both in planktonic and sessile forms, evidence the antimicrobial potential of these hybrid nanostructures with selectivity toward Gram-negative species. In particular, the Au@GeMoTi composite with the novel [Ti2 (HGeMo7 O28 )2 ]10- POM capping ligand exhibits outstanding bactericidal efficiency with a minimum inhibitory concentration of just 3.12 µm for the E. coli strain, thus outperforming the other three Au@POM counterparts. GeMoTi represents the fourth example of a water-soluble TiIV -containing polyoxomolybdate, and among them, the first sandwich-type structure having heteroatoms in high-oxidation state. The evaluation of the bactericidal mechanisms of action points to the cell membrane hyperpolarization, disruption, and subsequent nucleotide leakage and the low cytotoxicity exerted on five different cell lines at antimicrobial doses demonstrates the antibiotic-like character. These studies highlight the successful design and development of a new POM-based nanomaterial able to eradicate Gram-negative bacteria without damaging mammalian cells.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Infecções Estafilocócicas , Animais , Ouro/química , Escherichia coli , Titânio/farmacologia , Staphylococcus aureus , Nanopartículas Metálicas/química , Antibacterianos/farmacologia , Antibacterianos/química , Anti-Infecciosos/farmacologia , Testes de Sensibilidade Microbiana , Mamíferos
4.
ACS Omega ; 8(40): 37610-37621, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37841159

RESUMO

Ecuador as an international leader in the production of cocoa beans produced more than 300 000 tons in 2021; hence, the management and valorization of the 2 MM tons of waste generated annually by this industry have a strategic and socioeconomic value. Consequently, appropriate technologies to avoid environmental problems and promote sustainable development and the bioeconomy, especially considering that this is a megadiverse country, are of the utmost relevance. For this reason, we explored a low-cost pyrolysis route for valorizing cocoa pod husks from Ecuador's Amazonian region, aiming at producing pyrolysis liquids (bio-oil), biochar, and gas as an alternative chemical source from cocoa residues in the absence of hydrogen. Downstream catalytic processing of hot pyrolysis vapors using Mo- and/or Ni-based catalysts and standalone γ-Al2O3 was applied for obtaining upgraded bio-oils in a laboratory-scale fixed bed reactor, at 500 °C in a N2 atmosphere. As a result, bimetallic catalysts increased the bio-oil aqueous phase yield by 6.6%, at the expense of the organic phase due to cracking reactions according to nuclear magnetic resonance (NMR) and gas chromatography-mass spectrometry (GC-MS) results. Overall product yield remained constant, in comparison to pyrolysis without any downstream catalytic treatment (bio-oil ∼39.0-40.0 wt % and permanent gases 24.6-26.6 wt %). Ex situ reduced and passivated MoNi/γ-Al2O3 led to the lowest organic phase and highest aqueous phase yields. The product distribution between the two liquid phases was also modified by the catalytic upgrading experiments carried out, according to heteronuclear single-quantum correlation (HSQC), total correlation spectroscopy (TOCSY), and NMR analyses. The detailed composition distribution reported here shows the chemical production potential of this residue and serves as a starting point for subsequent valorizing technologies and/or processes in the food and nonfood industry beneficiating society, environment, economy, and research.

5.
Pflugers Arch ; 475(6): 667-690, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36884064

RESUMO

This historical review focuses on the evolution of the knowledge accumulated during the last two centuries on the biology of the adrenal medulla gland and its chromaffin cells (CCs). The review emerged in the context of a series of meetings that started on the Spanish island of Ibiza in 1982 with the name of the International Symposium on Chromaffin Cell Biology (ISCCB). Hence, the review is divided into two periods namely, before 1982 and from this year to 2022, when the 21st ISCCB meeting was just held in Hamburg, Germany. The first historical period extends back to 1852 when Albert Kölliker first described the fine structure and function of the adrenal medulla. Subsequently, the adrenal staining with chromate salts identified the CCs; this was followed by the establishment of the embryological origin of the adrenal medulla, and the identification of adrenaline-storing vesicles. By the end of the nineteenth century, the basic morphology, histochemistry, and embryology of the adrenal gland were known. The twentieth century began with breakthrough findings namely, the experiment of Elliott suggesting that adrenaline was the sympathetic neurotransmitter, the isolation of pure adrenaline, and the deciphering of its molecular structure and chemical synthesis in the laboratory. In the 1950s, Blaschko isolated the catecholamine-storing vesicles from adrenal medullary extracts. This switched the interest in CCs as models of sympathetic neurons with an explosion of studies concerning their functions, i.e., uptake of catecholamines by chromaffin vesicles through a specific coupled transport system; the identification of several vesicle components in addition to catecholamines including chromogranins, ATP, opioids, and other neuropeptides; the calcium-dependence of the release of catecholamines; the underlying mechanism of exocytosis of this release, as indicated by the co-release of proteins; the cross-talk between the adrenal cortex and the medulla; and the emission of neurite-like processes by CCs in culture, among other numerous findings. The 1980s began with the introduction of new high-resolution techniques such as patch-clamp, calcium probes, marine toxins-targeting ion channels and receptors, confocal microscopy, or amperometry. In this frame of technological advances at the Ibiza ISCCB meeting in 1982, 11 senior researchers in the field predicted a notable increase in our knowledge in the field of CCs and the adrenal medulla; this cumulative knowledge that occurred in the last 40 years of history of the CC is succinctly described in the second part of this historical review. It deals with cell excitability, ion channel currents, the exocytotic fusion pore, the handling of calcium ions by CCs, the kinetics of exocytosis and endocytosis, the exocytotic machinery, and the life cycle of secretory vesicles. These concepts together with studies on the dynamics of membrane fusion with super-resolution imaging techniques at the single-protein level were extensively reviewed by top scientists in the field at the 21st ISCCB meeting in Hamburg in the summer of 2022; this frontier topic is also briefly reviewed here. Many of the concepts arising from those studies contributed to our present understanding of synaptic transmission. This has been studied in physiological or pathophysiological conditions, in CCs from animal disease models. In conclusion, the lessons we have learned from CC biology as a peripheral model for brain and brain disease pertain more than ever to cutting-edge research in neurobiology. In the 22nd ISCCB meeting in Israel in 2024 that Uri Asheri is organizing, we will have the opportunity of seeing the progress of the questions posed in Ibiza, and on other questions that undoubtedly will arise.


Assuntos
Medula Suprarrenal , Células Cromafins , Animais , Cálcio/metabolismo , Células Cromafins/metabolismo , Medula Suprarrenal/metabolismo , Catecolaminas/metabolismo , Epinefrina , Exocitose/fisiologia
6.
Neurobiol Dis ; 179: 106046, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36806818

RESUMO

From a pathogenic perspective, Huntington's disease (HD) is being considered as a synaptopathy. As such, alterations in brain neurotransmitter release occur. As the activity of the sympathoadrenal axis is centrally controlled, deficits in the exocytotic release of catecholamine release may also occur. In fact, in chromaffin cells (CCs) of the adrenal medulla of the R6/1 model of HD, decrease of secretion and altered kinetics of the exocytotic fusion pore have been reported. Those alterations could be linked to mitochondrial deficits occurring in peripheral CCs, similar to those described in brain mitochondria. Here we have inquired about alterations in mitochondrial structure and function and their impact on exocytosis and calcium channel currents (ICa). We have monitored various parameters linked to those events, in wild type (WT) and the R6/1 mouse model of HD at a pre-disease stage (2 months age, 2 m), and when motor deficits are present (7 months age, 7 m). In isolated CCs from 7 m and in the adrenal medulla of R6/1 mice, we found the following alterations (with respect 7 m WT mice): (i) augmented fragmented mitochondria and oxidative stress with increased oxidized glutathione; (ii) decreased basal and maximal respiration; (iii) diminution of ATP cell levels; (iv) mitochondrial depolarization; (v) drastic decrease of catecholamine release with poorer potentiation by protonophore FCCP; (vi) decreased ICa inhibition by FCCP; and (vii) lesser potentiation by BayK8644 of ICa and smaller prolongation of current deactivation. Of note was the fact several of these alterations were already manifested in CCs from 2 m R6/1 mice at pre-disease stages. Based on those results, a plausible hypothesis can be raised in the sense that altered mitochondrial function seems to be an early primary event in HD pathogenesis. This is in line with an increasing number of mitochondrial, metabolic, and inflammatory alterations being recently reported in various HD peripheral tissues.


Assuntos
Células Cromafins , Doença de Huntington , Camundongos , Animais , Doença de Huntington/metabolismo , Cálcio/metabolismo , Camundongos Transgênicos , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/metabolismo , Células Cromafins/metabolismo , Células Cromafins/patologia , Catecolaminas , Mitocôndrias/metabolismo , Exocitose/fisiologia , Modelos Animais de Doenças
7.
Methods Mol Biol ; 2565: 105-112, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36205890

RESUMO

Amperometry is an electrochemical method based on the oxidation or reduction of molecules. Many secretion products, including catecholamines, contain in their molecule chemical groups with the ability to yield (oxidize) or capture (reduce) electrons upon its exposure to an electrical field. In order to measure the secretion of catecholamines, they are oxidized at +650 mV with a carbon electrode, releasing every molecule of catecholamine that is oxidized two electrons (e-) that are recorded as an electrical current. Amperometry is an easy-to-use and noninvasive technique for cells (unlike patch-clamp techniques for measuring membrane capacitance) and has been widely used to monitor online catecholamine release from perifused bovine chromaffin cell populations.


Assuntos
Células Cromafins , Animais , Carbono , Catecolaminas , Bovinos , Eletrodos , Técnicas de Patch-Clamp
8.
Biology (Basel) ; 11(4)2022 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-35453710

RESUMO

Alzheimer's disease (AD), the most common form of dementia, is becoming a global health problem and public health priority. In the advanced stages of AD, besides the initial cognitive symptoms, behavioral problems, particularly agitation and aggressiveness, become prevalent in AD patients. These non-cognitive symptoms could be related to a noradrenergic overactivation. In this study, we used chromaffin cells (CCs) isolated from the adrenal gland of 3xTg AD model mice to characterize potential alterations in the autocrine-paracrine modulation of voltage-dependent calcium channels (VDCCs), which in turn serve to regulate the release of catecholamines. We used mice at the presymptomatic stage (2 months) and mice over 12 months of age, when AD-related cognitive impairment was fully established. We found that the modulation of inward currents through VDCCs induced by extracellular ATP was stronger in CCs isolated from the adrenal medulla of 3xTg mice older than 12 months of age, an effect likely related to disease progression as it was not observed in CCs from age-matched WT mice. This enhanced modulation leads to increased catecholamine release in response to stressful situations, which may explain the non-cognitive behavioral problems found in AD patients.

9.
Biomolecules ; 12(4)2022 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-35454128

RESUMO

Lignocellulosic residues have the potential for obtaining high value-added products that could be better valorized if biorefinery strategies are adopted. The debarking of short-rotation crops yields important amounts of residues that are currently underexploited as low-grade fuel and could be a renewable source of phenolic compounds and other important phytochemicals. The isolation of these compounds can be carried out by different methods, but for attaining an integral valorization of barks, a preliminary extraction step for phytochemicals should be included. Using optimized extraction methods based on Soxhlet extraction can be effective for the isolation of phenolic compounds with antioxidant properties. In this study, poplar bark (Populus Salicaceae) was used to obtain a series of extracts using five different solvents in a sequential extraction of 24 h each in a Soxhlet extractor. Selected solvents were put in contact with the bark sample raffinate following an increasing order of polarity: n-hexane, dichloromethane, ethyl acetate, methanol, and water. The oily residues of the extracts obtained after each extraction were further subjected to flash chromatography, and the fractions obtained were characterized by gas chromatography coupled with mass spectrometry (GC-MS). The total phenolic content (TPC) was determined using the Folin-Ciocalteu method, and the antioxidant activity (AOA) of the samples was evaluated in their reaction with the free radical 2,2-Diphenyl-picrylhydrazyl (DPPH method). Polar solvents allowed for higher individual extraction yields, with overall extraction yields at around 23% (dry, ash-free basis). Different compounds were identified, including hydrolyzable tannins, phenolic monomers such as catechol and vanillin, pentoses and hexoses, and other organic compounds such as long-chain alkanes, alcohols, and carboxylic acids, among others. An excellent correlation was found between TPC and antioxidant activity for the samples analyzed. The fractions obtained using methanol showed the highest phenolic content (608 µg of gallic acid equivalent (GAE)/mg) and the greatest antioxidant activity.


Assuntos
Populus , Salicaceae , Antioxidantes/química , Metanol/química , Fenóis/química , Compostos Fitoquímicos/química , Casca de Planta/química , Extratos Vegetais/química , Solventes/química
10.
ACS Sustain Chem Eng ; 10(9): 2868-2880, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35281211

RESUMO

The use of biomass for the production of energy and higher added value products is a topic of increasing interest in line with growing environmental concerns and circular economy. Mesoporous material Sn-In-MCM-41 was synthesized for the first time and used as a catalyst for the transformation of sugars to methyl lactate (ML). This catalyst was characterized in depth by various techniques and compared with Sn-MCM-41 and In-MCM-41 catalysts. In the new Sn-In-MCM-41 material, both metals, homogeneously distributed throughout the mesoporous structure of MCM-41, actuate in a cooperative way in the different steps of the reaction mechanism. As a result, yields to ML of 69.4 and 73.9% in the transformation of glucose and sucrose were respectively reached. In the case of glucose, the ML yield 1.5 and 2.6 times higher than those of Sn-MCM-41 and In-MCM-41 catalysts, respectively. The Sn-In-MCM-41 catalyst was reused in the transformation of glucose up to four cycles without significant loss of catalytic activity. Finally, life cycle assessment comparison between chemical and biochemical routes to produce ML allowed us to conclude that the use of Sn-In-MCM-41 reduces the environmental impacts compared to Sn-MCM-41. Nevertheless, to make the chemical route comparable to the biochemical one, improvements in the catalyst and ML synthesis have to be achieved.

11.
Nanomaterials (Basel) ; 11(7)2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202517

RESUMO

In this work, the production of renewable hydrocarbons was explored by the means of waste cottonseed oil (WCSO) micropyrolysis at 500 °C. Catalytic upgrading of the pyrolysis vapors was studied using α-Al2O3, γ-Al2O3, Mo-Co/γ-Al2O3, and Mo-Ni/γ-Al2O3 catalysts. The oxygen removal efficiency was much lower in non-catalytic pyrolysis (18.0%), whilst γ-Al2O3 yielded a very high oxygen removal efficiency (91.8%), similar to that obtained with Mo-Co/γ-Al2O3 (92.8%) and higher than that attained with Mo-Ni/γ-Al2O3 (82.0%). Higher conversion yields into total renewable hydrocarbons were obtained with Mo-Co/γ-Al2O3 (61.9 wt.%) in comparison to Mo-Ni/γ-Al2O3 (46.6%). GC/MS analyses showed a relative chemical composition of 31.3, 86.4, and 92.6% of total renewable hydrocarbons and 58.7, 7.2, and 4.2% of oxygenated compounds for non-catalytic bio-oil (BOWCSO), BOMoNi and BOMoCo, respectively. The renewable hydrocarbons that were derived from BOMoNi and BOMoCo were mainly composed by olefins (35.3 and 33.4%), aromatics (31.4 and 28.9%), and paraffins (13.8 and 25.7%). The results revealed the catalysts' effectiveness in FFA decarbonylation and decarboxylation, as evidenced by significant changes in the van Krevelen space, with the lowest O/C ratio values for BOMoCo and BOMoNi (O/C = 0-0.10) in relation to the BOWCSO (O/C = 0.10-0.20), and by a decrease in the presence of oxygenated compounds in the catalytic bio-oils.

12.
Biomedicines ; 9(6)2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34070533

RESUMO

Traumatic brain injury (TBI) is one of the leading causes of mortality and disability worldwide without any validated biomarker or set of biomarkers to help the diagnosis and evaluation of the evolution/prognosis of TBI patients. To achieve this aim, a deeper knowledge of the biochemical and pathophysiological processes triggered after the trauma is essential. Here, we identified the serum amyloid A1 protein-Toll-like receptor 4 (SAA1-TLR4) axis as an important link between inflammation and the outcome of TBI patients. Using serum and mRNA from white blood cells (WBC) of TBI patients, we found a positive correlation between serum SAA1 levels and injury severity, as well as with the 6-month outcome of TBI patients. SAA1 levels also correlate with the presence of TLR4 mRNA in WBC. In vitro, we found that SAA1 contributes to inflammation via TLR4 activation that releases inflammatory cytokines, which in turn increases SAA1 levels, establishing a positive proinflammatory loop. In vivo, post-TBI treatment with the TLR4-antagonist TAK242 reduces SAA1 levels, improves neurobehavioral outcome, and prevents blood-brain barrier disruption. Our data support further evaluation of (i) post-TBI treatment in the presence of TLR4 inhibition for limiting TBI-induced damage and (ii) SAA1-TLR4 as a biomarker of injury progression in TBI patients.

13.
Nat Prod Res ; 35(22): 4870-4875, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32174171

RESUMO

We investigated the role of triterpene barbinervic acid from Eugenia punicifolia dichloromethane extract in vasopressor responses. Renal arteries were cannulated and perfused with Krebs-Hepes solution. Changes in aorta isometric tension were recorded and transferred to a data acquisition system. Cumulative curves were constructed based on the maximum effect of agonists. Barbinervic acid reduced the renal tonus induced by NA in a NO-dependent manner (IC50 = 30 µM). Triterpene (70 µM) also induced rapid and transient relaxation in aorta that had been precontracted with K+ (53.2 ± 0.05%) or phenylephrine (36.7 ± 0.05%). In silico data revealed two possible active sites for interactions between barbinervic acid and NO synthase. Barbinervic acid showed a vasodilator effect and could potentially be used as a template for developing new molecules for the treatment of cardiovascular disease.


Assuntos
Eugenia , Triterpenos , Simulação por Computador , Extratos Vegetais/farmacologia , Folhas de Planta , Triterpenos/farmacologia
14.
Int J Mol Sci ; 23(1)2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35008868

RESUMO

Upon depolarization of chromaffin cells (CCs), a prompt release of catecholamines occurs. This event is triggered by a subplasmalemmal high-Ca2+ microdomain (HCMD) generated by Ca2+ entry through nearby voltage-activated calcium channels. HCMD is efficiently cleared by local mitochondria that avidly take up Ca2+ through their uniporter (MICU), then released back to the cytosol through mitochondrial Na+/Ca2+ exchanger (MNCX). We found that newly synthesized derivative ITH15004 facilitated the release of catecholamines triggered from high K+-depolarized bovine CCs. Such effect seemed to be due to regulation of mitochondrial Ca2+ circulation because: (i) FCCP-potentiated secretory responses decay was prevented by ITH15004; (ii) combination of FCCP and ITH15004 exerted additive secretion potentiation; (iii) such additive potentiation was dissipated by the MICU blocker ruthenium red (RR) or the MNCX blocker CGP37157 (CGP); (iv) combination of FCCP and ITH15004 produced both additive augmentation of cytosolic Ca2+ concentrations ([Ca2+]c) K+-challenged BCCs, and (v) non-inactivated [Ca2+]c transient when exposed to RR or CGP. On pharmacological grounds, data suggest that ITH15004 facilitates exocytosis by acting on mitochondria-controlled Ca2+ handling during K+ depolarization. These observations clearly show that ITH15004 is a novel pharmacological tool to study the role of mitochondria in the regulation of the bioenergetics and exocytosis in excitable cells.


Assuntos
Cálcio , Catecolaminas , Células Cromafins , Exocitose , Mitocôndrias , Animais , Bovinos , Cálcio/metabolismo , Sinalização do Cálcio , Catecolaminas/metabolismo , Células Cultivadas , Células Cromafins/citologia , Células Cromafins/efeitos dos fármacos , Exocitose/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Cultura Primária de Células
15.
Antioxidants (Basel) ; 9(12)2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33353046

RESUMO

Microglia controls the immune system response in the brain. Specifically, the activation and dysregulation of the NLRP3 inflammasome is responsible for the initiation of the inflammatory process through IL-1ß and IL-18 release. In this work, we have focused on studying the effect of melatonin on the regulation of the NLRP3 inflammasome through α7 nicotinic receptor (nAChR) and its relationship with autophagy. For this purpose, we have used pharmacological and genetic approaches in lipopolysaccharide (LPS)-induced inflammation models in both in vitro and in vivo models. In the BV2 cell line, LPS inhibited autophagy, which increased NLRP3 protein levels. However, melatonin promoted an increase in the autophagic flux. Treatment of glial cultures from wild-type (WT) mice with LPS followed by extracellular adenosine triphosphate (ATP) produced the release of IL-1ß, which was reversed by melatonin pretreatment. In cultures from α7 nAChR knock-out (KO) mice, melatonin did not reduce IL-1ß release. Furthermore, melatonin decreased the expression of inflammasome components and reactive oxygen species (ROS) induced by LPS; co-incubation of melatonin with α-bungarotoxin (α-bgt) or luzindole abolished the anti-inflammatory and antioxidant effects. In vivo, melatonin reverted LPS-induced cognitive decline, reduced NLRP3 levels and promoted autophagic flux in the hippocampi of WT mice, whereas in α7 nAChR KO mice melatonin effect was not observed. These results suggest that melatonin may modulate the complex interplay between α7 nAChR and autophagy signaling.

16.
Biomolecules ; 10(9)2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32962141

RESUMO

Lignocellulosic materials are promising alternatives to non-renewable fossil sources when producing aromatic compounds. Lignins from Populus salicaceae. Pinus radiata and Pinus pinaster from industrial wastes and biorefinery effluents were isolated and characterized. Lignin was depolymerized using homogenous (NaOH) and heterogeneous (Ni-, Cu- or Ni-Cu-hydrotalcites) base catalysis and catalytic hydrogenolysis using Ru/C. When homogeneous base catalyzed depolymerization (BCD) and Ru/C hydrogenolysis were combined on poplar lignin, the aromatics amount was ca. 11 wt.%. Monomer distributions changed depending on the feedstock and the reaction conditions. Aqueous NaOH produced cleavage of the alkyl side chain that was preserved when using modified hydrotalcite catalysts or Ru/C-catalyzed hydrogenolysis in ethanol. Depolymerization using hydrotalcite catalysts in ethanol produced monomers bearing carbonyl groups on the alkyl side chain. The analysis of the reaction mixtures was done by size exclusion chromatography (SEC) and diffusion ordered nuclear magnetic resonance spectroscopy (DOSY NMR). 31P NMR and heteronuclear single quantum coherence spectroscopy (HSQC) were also used in this study. The content in poly-(hydroxy)-aromatic ethers in the reaction mixtures decreased upon thermal treatments in ethanol. It was concluded that thermo-solvolysis is key in lignin depolymerization, and that the synergistic effect of Ni and Cu provided monomers with oxidized alkyl side chains.


Assuntos
Hidrocarbonetos Aromáticos/química , Lignina/química , Pinus/química , Populus/química , Catálise , Cromatografia em Gel/métodos , Cobre/química , Etanol/química , Hidrocarbonetos Aromáticos/metabolismo , Lignina/isolamento & purificação , Lignina/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Níquel/química , Polimerização , Temperatura , Água/química , Difração de Raios X/métodos
17.
Med Res Rev ; 40(6): 2427-2465, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32677086

RESUMO

Neurodegenerative diseases (NDDs) represent a huge social burden, particularly in Alzheimer's disease (AD) in which all proposed treatments investigated in murine models have failed during clinical trials (CTs). Thus, novel therapeutic strategies remain crucial. Neuroinflammation is a common pathogenic feature of NDDs. As purinergic P2X7 receptors (P2X7Rs) are gatekeepers of inflammation, they could be developed as drug targets for NDDs. Herein, we review this challenging hypothesis and comment on the numerous studies that have investigated P2X7Rs, emphasizing their molecular structure and functions, as well as their role in inflammation. Then, we elaborate on research undertaken in the field of medicinal chemistry to determine potential P2X7R antagonists. Subsequently, we review the state of neuroinflammation and P2X7R expression in the brain, in animal models and patients suffering from AD, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease, multiple sclerosis, and retinal degeneration. Next, we summarize the in vivo studies testing the hypothesis that by mitigating neuroinflammation, P2X7R blockers afford neuroprotection, increasing neuroplasticity and neuronal repair in animal models of NDDs. Finally, we reviewed previous and ongoing CTs investigating compounds directed toward targets associated with NDDs; we propose that CTs with P2X7R antagonists should be initiated. Despite the high expectations for putative P2X7Rs antagonists in various central nervous system diseases, the field is moving forward at a relatively slow pace, presumably due to the complexity of P2X7Rs. A better pharmacological approach to combat NDDs would be a dual strategy, combining P2X7R antagonism with drugs targeting a selective pathway in a given NDD.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Preparações Farmacêuticas , Animais , Humanos , Camundongos , Doenças Neurodegenerativas/tratamento farmacológico , Antagonistas do Receptor Purinérgico P2X/farmacologia , Receptores Purinérgicos P2X7
18.
ACS Appl Mater Interfaces ; 12(32): 36458-36467, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32646210

RESUMO

We present a simple, versatile, and low-cost approach for the preparation of surface-enhanced Raman spectroscopy (SERS)-active regions within a microfluidic channel 50 cm in length. The approach involves the UV-light-driven formation of polyoxometalate-decorated gold nanostructures, Au@POM (POM: H3PW12O40 (PW) and H3PMo12O40 (PMo)), that self-assemble in situ on the surface of the polydimethylsiloxane (PDMS) microchannels without any extra functionalization procedure. The fabricated LoCs were characterized by scanning electron microscopy (SEM), UV-vis, Raman, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) techniques. The SERS activity of the resulting Au@POM-coated lab-on-a-chip (LoC) devices was evaluated in both static and flow conditions using rhodamine R6G. The SERS response of Au@PW-based LoCs was found to be superior to Au@PMo counterparts and outstanding when compared to reported data on metal@POM nanocomposites. We demonstrate the potentialities of both Au@POM-coated LoCs as analytical platforms for real-time detection of the organophosphorous pesticide paraoxon-methyl at 10-6 M concentration level.

19.
J Environ Manage ; 265: 110510, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32275240

RESUMO

Valorization of Fruit and Vegetable Wastes (FVW) is challenging owing to logistic-related problems, as well as to their perishable nature and heterogeneity, among other factors. In this work, the main existing routes for food waste valorization are critically reviewed. The study focuses on FVW because they constitute an important potential source for valuable natural products and chemicals. It can be concluded that FVW management can be carried out following different processing routes, though nowadays the best solution is to find an adequate balance between conventional waste management methods and some emerging valorization technologies. Presently, both conventional and emerging technologies must be considered in a coordinated manner to enable an integral management of FVW. By doing so, impacts on food safety and on the environment can be minimized whilst wasting of natural resources is avoided. Depending on the characteristics of FVW and on the existing market demand, the most relevant valorization options are extraction of bioactive compounds, production of enzymes and exopolysaccharides, synthesis of bioplastics and biopolymers and production of biofuels. The most efficient emergent processing technologies must be promoted in the long term, in detriment of the conventional ones used nowadays. In consequence, future integral valorization of FVW will probably comprise two stages: direct processing of FVW into value-added products, followed by processing of the residual streams, byproducts and leftover matter by means of conventional waste management technologies.


Assuntos
Eliminação de Resíduos , Gerenciamento de Resíduos , Biocombustíveis , Frutas , Verduras
20.
Neurotoxicology ; 70: 99-111, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30448301

RESUMO

In the frame of a repositioning programme with cholinergic medicines in clinical use searching for neuroprotective properties, we surprisingly found that spasmolytic antimuscarinics otilonium and pinaverium exhibited neurotoxic effects in neuronal cultures. We decided to characterize such unexpected action in primary cultures of rat embryo cortical neurons. Neurotoxicity was time- and concentration-dependent, exhibiting approximate EC50 values of 5 µM for both drugs. Seven antimuscarinic drugs endowed with a quaternary ammonium, and another 10 drugs with different cholinergic activities, carrying in their molecule a ternary ammonium did not exhibit neurotoxicity. Both drugs caused a concentration-dependent blockade of whole-cell inward currents through voltage-activated calcium channels (VACCs). Consistent with this, they also blocked the K+-elicited [Ca2+]c transients. Neither antioxidant catalase, glutathione, n-acetylcysteine, nor melatonin protected against neurotoxicity of otilonium or pinaverium. However cyclosporine A, a blocker of the mitochondrial permeability transition pore, prevented the neurotoxic effects of otilonium and pinaverium monitored as the fraction of cells undergoing apoptosis. Furthermore, the caspase-9 and caspase-3 inhibitor Ac-LEHD-CHO mitigated the apoptotic neuronal death of both drugs by around 50%. Data are compatible with the hypothesis that otilonium and pinaverium elicit neuronal death by activating the intrinsic mitochondrial-mediated signaling pathway of apoptosis. This may have its origin in the mitigation of Ca2+ entry and the uncoupling of the Ca2+-dependent generation of mitochondrial bioenergetics, thus causing the opening of the mitochondrial mPTP to elicit apoptotic neuronal death.


Assuntos
Apoptose/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Morfolinas/toxicidade , Neurônios/efeitos dos fármacos , Compostos de Amônio Quaternário/toxicidade , Animais , Apoptose/fisiologia , Bovinos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Córtex Cerebral/patologia , Córtex Cerebral/fisiologia , Relação Dose-Resposta a Droga , Embrião de Mamíferos , Feminino , Humanos , Mitocôndrias/patologia , Mitocôndrias/fisiologia , Antagonistas Muscarínicos , Neurônios/patologia , Neurônios/fisiologia , Gravidez , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...