Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Mater ; 5(10): 802-4, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16951675

RESUMO

The magnetocaloric effect (MCE) is the basis for magnetic refrigeration, and can replace conventional gas compression technology due to its superior efficiency and environment friendliness. MCE materials must exhibit a large temperature variation in response to an adiabatic magnetic-field variation and a large isothermal entropic effect is also expected. In this respect, MnAs shows the colossal MCE, but the effect appears under high pressures. In this work, we report on the properties of Mn(1-x)Fe(x)As that exhibit the colossal effect at ambient pressure. The MCE peak varies from 285 K to 310 K depending on the Fe concentration. Although a large thermal hysteresis is observed, the colossal effect at ambient pressure brings layered magnetic regenerators with huge refrigerating power closer to practical applications around room temperature.

2.
Phys Rev Lett ; 93(23): 237202, 2004 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-15601196

RESUMO

To present day, the maximum magnetocaloric effect (MCE) at room temperature for a magnetic field change of 5 T is 40 J/(kg K) for MnAs. In this Letter we present colossal MCE measurements on MnAs under pressure, reaching values up to 267 J/(kg K), far greater than the magnetic limit arising from the assumption of magnetic field independence of the lattice and electronic entropy contributions. The origin of the effect is the contribution to the entropy variation coming from the lattice through the magnetoelastic coupling.

3.
Inorg Chem ; 42(21): 6898-906, 2003 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-14552641

RESUMO

The compounds [Ru(NH(3))(5)(dtdp)](TFMS)(3), [Os(NH(3))(5)(dtdp)](TFMS)(3), [(NH(3))(5)Os(dtdp)Os(NH(3))(5)](TFMS)(6), [(NH(3))(5)Os(dtdp)Ru(NH(3))(5)](TFMS)(3)(PF(6))(2), and [(NH(3))(5)Os(dtdp)Fe(CN)(5)] (dtdp = 4,4'-dithiodipyridine, TFMS = trifluoromethanesulfonate) have been synthesized and characterized by elemental analysis, cyclic voltammetry, electronic, vibrational, EPR, and (1)H NMR spectroscopies. Changes in the electronic and voltammetric spectra of the ion complex [Os(NH(3))(5)(dtdp)](3+) as a function of the solution pH enable us to calculate the pK(a) for the [Os(NH(3))(5)(dtdpH)](4+) and [Os(NH(3))(5)(dtdpH)](3+) acids as 3.5 and 5.5, respectively. The comparison of the above pK(a) data with that for the free ligand (pK(1) = 4.8) provides evidence for the -S-S- bridge efficiency as an electron conductor between the two pyridine rings. The symmetric complex, [(NH(3))(5)Os(dtdp)Os(NH(3))(5)](6+), is found to exist in two geometric forms, and the most abundant form (most probably trans) has a strong conductivity through the -S-S- bridge, as is shown by EPR, which finds it to have an S = 1 spin state with a spin-spin interaction parameter of 150-200 G both in the solid sate and in frozen solution. Further the NMR of the same complex shows a large displacement of unpaired spin into the pi orbitals of the dttp ligand relative to that found in [Os(NH(3))(5)(dtdp)](3+). The comproportionation constant, K(c) = 2.0 x 10(5), for the equilibrium equation [Os(II)Os(II)] + [Os(III)Os(III)] right harpoon over left harpoon 2[Os(II)Os(III)] and the near-infrared band energy for the mixed-valence species (MMCT), [(NH(3))(5)Os(dtdp)Os(NH(3))(5)](5+) (lambda(MMCT) = 1665 nm, epsilon = 3.5 x 10(3) M(-)(1) cm(-)(1), deltanu(1/2) = 3.7 x 10(3) cm(-)(1), alpha = 0.13, and H(AB) = 7.8 x 10(2) cm(-)(1)), are quite indicative of strong electron delocalization between the two osmium centers. The electrochemical and spectroscopic data for the unsymmetrical binuclear complexes [(NH(3))(5)Os(III)(dtdp)Ru(II)(NH(3))(5)](5+) (lambda(MMCT) = 965 nm, epsilon = 2.2 x 10(2) M(-)(1) cm(-)(1), deltanu(1/2) = 3.0 x 10(3) cm(-)(1), and H(AB) = 2.2 x 10(2) cm(-)(1)) and [(NH(3))(5)Os(III)(dtdp)Fe(II)(CN)(5)] (lambda(MMCT) = 790 nm, epsilon = 7.5 x 10 M(-)(1) cm(-)(1), deltanu(1/2) = 5.4 x 10(3) cm(-)(1), and H(AB) = 2.0 x 10(2) cm(-)(1)) also suggest a considerable electron delocalization through the S-S bridge. As indicated by a comparison of K(c) and energy of the MMCT process in the iron, ruthenium, and osmium complexes, the electron delocalization between the two metal centers increases in the following order: Fe < Ru < Os.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...