Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 18036, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34508132

RESUMO

The cross-sections of deuteron-induced nuclear reactions suitable for ion beam analysis, measured in different laboratories, are often significantly different. In the present work, differential cross-sections of 27Al(d,p) and 27Al(d,α) reactions were measured, and the cross sections benchmarked with thick target spectra obtained from pure aluminium for the first time in two independent laboratories. The 27Al(d,p) and (d,α) differential cross-sections were measured between 1.4 and 2 MeV at scattering angles of 165°, 150°, and 135° in the VDGT laboratory in Tehran (Iran), and the same measurements for detector angle of 150° were repeated from scratch, including target making, with independent equipment on the SAFIR platform at INSP in Paris (France). The results of these two measurements at 150° are in good agreement, and for the first time a fitted function is proposed to describe the Al-cross sections for which no suitable theoretical expression exists. The obtained differential cross-sections were validated through benchmarking, by fitting with SIMNRA deuteron-induced particle spectra obtained from a high purity bulk Al target at both labs for deuteron incident energies between 1.6 and 2 MeV. The thick target spectra are well-reproduced. The evaluated and benchmarked cross sections have been uploaded to the ion beam analysis nuclear data library database (www-nds.iaea.org/ibandl/).

2.
Phys Rev Lett ; 89(25): 256102, 2002 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-12484903

RESUMO

Thermal growth of silicon oxide films on silicon carbide in O2 was investigated using oxygen isotopic substitution and narrow resonance nuclear reaction profiling. This investigation was carried out in parallel with the thermal growth of silicon oxide films on Si. Results demonstrate that the limiting steps of the thermal oxide growth are different in these two semiconductors, being diffusion limited in the case of Si and reaction limited in the case of SiC. This fact renders the growth kinetics of SiO2 on SiC very sensitive to the reactivity of the interface region, whose compositional and structural changes can affect the electrical properties of the structure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...