Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 6664, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36333305

RESUMO

Embryonic development is dictated by tight regulation of DNA replication, cell division and differentiation. Mutations in DNA repair and replication genes disrupt this equilibrium, giving rise to neurodevelopmental disease characterized by microcephaly, short stature and chromosomal breakage. Here, we identify biallelic variants in two components of the RAD18-SLF1/2-SMC5/6 genome stability pathway, SLF2 and SMC5, in 11 patients with microcephaly, short stature, cardiac abnormalities and anemia. Patient-derived cells exhibit a unique chromosomal instability phenotype consisting of segmented and dicentric chromosomes with mosaic variegated hyperploidy. To signify the importance of these segmented chromosomes, we have named this disorder Atelís (meaning - incomplete) Syndrome. Analysis of Atelís Syndrome cells reveals elevated levels of replication stress, partly due to a reduced ability to replicate through G-quadruplex DNA structures, and also loss of sister chromatid cohesion. Together, these data strengthen the functional link between SLF2 and the SMC5/6 complex, highlighting a distinct role for this pathway in maintaining genome stability.


Assuntos
Proteínas de Ciclo Celular , Microcefalia , Humanos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Microcefalia/genética , Reparo do DNA/genética , Cromossomos/metabolismo , Instabilidade Genômica , Proteínas de Ligação a DNA/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Cromossômicas não Histona/metabolismo
2.
J Clin Invest ; 132(5)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35025765

RESUMO

Despite being the first homolog of the bacterial RecQ helicase to be identified in humans, the function of RECQL1 remains poorly characterized. Furthermore, unlike other members of the human RECQ family of helicases, mutations in RECQL1 have not been associated with a genetic disease. Here, we identify 2 families with a genome instability disorder that we have named RECON (RECql ONe) syndrome, caused by biallelic mutations in the RECQL gene. The affected individuals had short stature, progeroid facial features, a hypoplastic nose, xeroderma, and skin photosensitivity and were homozygous for the same missense mutation in RECQL1 (p.Ala459Ser), located within its zinc binding domain. Biochemical analysis of the mutant RECQL1 protein revealed that the p.A459S missense mutation compromised its ATPase, helicase, and fork restoration activity, while its capacity to promote single-strand DNA annealing was largely unaffected. At the cellular level, this mutation in RECQL1 gave rise to a defect in the ability to repair DNA damage induced by exposure to topoisomerase poisons and a failure of DNA replication to progress efficiently in the presence of abortive topoisomerase lesions. Taken together, RECQL1 is the fourth member of the RecQ family of helicases to be associated with a human genome instability disorder.


Assuntos
Neoplasias da Mama , Replicação do DNA , Feminino , Predisposição Genética para Doença , Instabilidade Genômica , Humanos , Mutação , RecQ Helicases/genética , RecQ Helicases/metabolismo
3.
Oncotarget ; 9(50): 29508-29524, 2018 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-30034634

RESUMO

BACKGROUND: Cyclin-Dependent Kinases (CDKs) are established anti-cancer drug targets and a new generation of CDK inhibitors are providing clinical benefits to a sub-set of breast cancer patients. We have recently shown that human CDK18 promotes efficient cellular responses to replication stress. In the current study, we have investigated the clinicopathological and functional significance of CDK18 expression levels in breast cancers. RESULTS: High CDK18 protein expression was associated with a triple negative and basal-like phenotype (p = 0.021 and 0.027 respectively) as well as improved patient survival, which was particularly significant in ER negative breast cancers (n = 594, Log Rank 6.724, p = 0.01) and those treated with chemotherapy (n = 270, Log Rank 4.575, p = 0.03). In agreement with these clinical findings, breast cancer cells genetically manipulated using a dCRISPR approach to express high levels of endogenous CDK18 exhibited an increased sensitivity to replication stress-inducing chemotherapeutic agents, as a consequence to defective replication stress signalling at the molecular level. CONCLUSIONS: These data reveal that CDK18 protein levels may predict breast cancer disease progression and response to chemotherapy, and provide further rationale for potential targeting of CDK18 as part of novel anti-cancer strategies for human cancers. MATERIALS AND METHODS: CDK18 protein expression was evaluated in 1650 breast cancers and correlated to clinicopathological parameters and survival outcomes. Similar analyses were carried out for genetic and transcriptomic changes in CDK18 within several publically available breast cancer cohorts. Additionally, we used a deactivated CRISPR/Cas9 approach (dCRISPR) to elucidate the molecular consequences of heightened endogenous CDK18 expression within breast cancer cells.

4.
Sci Rep ; 6: 35548, 2016 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-27739501

RESUMO

It was recently discovered that vertebrate genomes contain multiple endogenised nucleotide sequences derived from the non-retroviral RNA bornavirus. Strikingly, some of these elements have been evolutionary maintained as open reading frames in host genomes for over 40 million years, suggesting that some endogenised bornavirus-derived elements (EBL) might encode functional proteins. EBLN1 is one such element established through endogenisation of the bornavirus N gene (BDV N). Here, we functionally characterise human EBLN1 as a novel regulator of genome stability. Cells depleted of human EBLN1 accumulate DNA damage both under non-stressed conditions and following exogenously induced DNA damage. EBLN1-depleted cells also exhibit cell cycle abnormalities and defects in microtubule organisation as well as premature centrosome splitting, which we attribute in part, to improper localisation of the nuclear envelope protein TPR. Our data therefore reveal that human EBLN1 possesses important cellular functions within human cells, and suggest that other EBLs present within vertebrate genomes may also possess important cellular functions.


Assuntos
Bornaviridae/metabolismo , Ciclo Celular/genética , Instabilidade Genômica , Microtúbulos/metabolismo , Nucleoproteínas/metabolismo , Proteína Quinase CDC2 , Linhagem Celular , Centrossomo/metabolismo , Ciclina B1/metabolismo , Dano ao DNA , Humanos , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Nucleoproteínas/deficiência , Ligação Proteica , Proteínas/metabolismo , Proteínas Proto-Oncogênicas/metabolismo
5.
Cell Rep ; 16(10): 2565-2575, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27568553

RESUMO

Through an RNAi-based screen for previously uncharacterized regulators of genome stability, we have identified the human protein C5orf45 as an important factor in preventing the accumulation of DNA damage in human cells. Here, we functionally characterize C5orf45 as a binding partner of the MRE11-RAD50-NBS1 (MRN) damage-sensing complex. Hence, we rename C5orf45 as MRNIP for MRN-interacting protein (MRNIP). We find that MRNIP is rapidly recruited to sites of DNA damage. Cells depleted of MRNIP display impaired chromatin loading of the MRN complex, resulting in reduced DNA end resection and defective ATM-mediated DNA damage signaling, a reduced ability to repair DNA breaks, and radiation sensitivity. Finally, we show that MRNIP phosphorylation on serine 115 leads to its nuclear localization, and this modification is required for MRNIP's role in promoting genome stability. Collectively, these data reveal that MRNIP is an important component of the human DNA damage response.


Assuntos
Proteínas de Transporte/metabolismo , Dano ao DNA , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Quinase do Ponto de Checagem 2/metabolismo , Cromatina/metabolismo , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Reparo do DNA/efeitos da radiação , Endodesoxirribonucleases , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Ligação Proteica/efeitos da radiação , Tolerância a Radiação/efeitos da radiação , Radiação Ionizante , Homologia de Sequência de Aminoácidos , Transdução de Sinais/efeitos da radiação
6.
Nucleic Acids Res ; 44(18): 8772-8785, 2016 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-27382066

RESUMO

Cyclin-dependent kinases (CDKs) coordinate cell cycle checkpoints with DNA repair mechanisms that together maintain genome stability. However, the myriad mechanisms that can give rise to genome instability are still to be fully elucidated. Here, we identify CDK18 (PCTAIRE 3) as a novel regulator of genome stability, and show that depletion of CDK18 causes an increase in endogenous DNA damage and chromosomal abnormalities. CDK18-depleted cells accumulate in early S-phase, exhibiting retarded replication fork kinetics and reduced ATR kinase signaling in response to replication stress. Mechanistically, CDK18 interacts with RAD9, RAD17 and TOPBP1, and CDK18-deficiency results in a decrease in both RAD17 and RAD9 chromatin retention in response to replication stress. Importantly, we demonstrate that these phenotypes are rescued by exogenous CDK18 in a kinase-dependent manner. Collectively, these data reveal a rate-limiting role for CDK18 in replication stress signalling and establish it as a novel regulator of genome integrity.


Assuntos
Quinases Ciclina-Dependentes/metabolismo , Replicação do DNA , Instabilidade Genômica , Transdução de Sinais , Estresse Fisiológico , Pontos de Checagem do Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Cromatina/genética , Cromatina/metabolismo , Aberrações Cromossômicas , Quinases Ciclina-Dependentes/química , Quinases Ciclina-Dependentes/genética , Dano ao DNA , Humanos , Fosforilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Interferência de RNA , RNA Interferente Pequeno/genética
7.
Nucleic Acids Res ; 43(20): 9776-87, 2015 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-26271993

RESUMO

The replication protein A (RPA)-ssDNA complex formed at arrested replication forks recruits key proteins to activate the ATR-CHK1 signalling cascade. When CHK1 is inhibited during DNA replication stress, RPA2 is extensively hyperphosphorylated. Here, we investigated the role of RPA2 hyperphosphorylation in the fate of cells when CHK1 is inhibited. We show that proteins normally involved in DNA repair (RAD51) or control of RPA phosphorylation (the PP4 protein phosphatase complex) are not recruited to the genome after treatment with CHK1 and DNA synthesis inhibitors. This is not due to RPA2 hyperphosphorylation as suppression of this response does not restore loading suggesting that recruitment requires active CHK1. To determine whether RPA2 hyperphosphorylation protects stalled forks from collapse or induction of apoptosis in CHK1 inhibited cells during replication stress, cells expressing RPA2 genes mutated at key phosphorylation sites were characterized. Mutant RPA2 rescued cells from RPA2 depletion and reduced the level of apoptosis induced by treatment with CHK1 and replication inhibitors however the incidence of double strand breaks was not affected. Our data indicate that RPA2 hyperphosphorylation promotes cell death during replication stress when CHK1 function is compromised but does not appear to be essential for replication fork integrity.


Assuntos
Apoptose , Replicação do DNA , Proteínas Quinases , Proteína de Replicação A/metabolismo , Proteínas de Ciclo Celular/antagonistas & inibidores , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Quinase 1 do Ponto de Checagem , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Replicação do DNA/efeitos dos fármacos , Humanos , Mutação , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Rad51 Recombinase/metabolismo , Proteína de Replicação A/genética , Estresse Fisiológico
8.
Oncotarget ; 5(22): 11381-98, 2014 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-25359767

RESUMO

Unwinding duplex DNA is a critical processing step during replication, repair and transcription. Pif1 are highly conserved non-processive 5'->3' DNA helicases with well-established roles in maintenance of yeast genome stability. However, the function of the sole member of Pif1 family in humans remains unclear. Human PIF1 is essential for tumour cell viability, particularly during replication stress, but is dispensable in non-cancerous cells and Pif1 deficient mice. Here we report that suppression of PIF1 function slows replication fork rates and increases arrested forks during normal cycling conditions. Importantly, PIF1-dependent replication impediments impair S-phase progression and reduce proliferation rates of RAS oncogene-transformed fibroblasts, where replication fork slowing is exacerbated, but not parental, non-cancerous cells. Disrupted fork movement upon PIF1-depletion does not enhance double-stranded break formation or DNA damage responses but affects resumption of DNA synthesis after prolonged replication inhibitor exposure, accompanied by diminished new origin firing and mainly S-phase entry. Taken together, we characterised a functional role for human PIF1 in DNA replication that becomes important for cell growth under oncogenic stress. Given that oncogenes induce high levels of replication stress during the early stages of tumorigenesis, this function of PIF1 could become critical during cancer development.


Assuntos
DNA Helicases/genética , DNA Helicases/metabolismo , Replicação do DNA/fisiologia , Processos de Crescimento Celular/fisiologia , Linhagem Celular Transformada , DNA Helicases/deficiência , Replicação do DNA/genética , Fibroblastos , Instabilidade Genômica , Células HCT116 , Humanos , Oncogenes , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Transfecção , Proteínas ras/genética
9.
Cancer Res ; 71(14): 4998-5008, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21616935

RESUMO

Defining the processes that sustain telomere maintenance is critical to our understanding of cancer and longevity. PIF1 is a nonprocessive 5'->3' human DNA helicase that exhibits broad substrate specificity. In vitro studies have implicated PIF1 in maintaining telomeres and processing stalled DNA replication forks, but disruption of the murine Pif1 gene did not yield any apparent phenotype. In this study, we evaluated the function of the PIF1 gene in human cells by using siRNA knockdown strategies to gauge its role in the response to DNA replication stress. We found that PIF1 depletion reduced the survival of both p53-deficient and p53-proficient human tumor cells by triggering apoptosis. In contrast, nonmalignant cells were unaffected by PIF1 depletion. Apoptosis induction in tumor cells was augmented by cotreatment with replication inhibitors (thymidine, hydroxyurea, or gemcitabine). When sensitive PIF1-depleted cells were released from a thymidine-induced S-phase arrest, there remained a subpopulation of cells that failed to enter S-phase. This cell subpopulation displayed an increase in levels of cyclin E and p21, as well as a deficiency in S-phase checkpoint markers that were induced with thymidine in PIF1 expressing cells. Specifically, CHK1 activation was suppressed and we detected no consistent changes in ATM S1981 autophosphorylation, γH2AX induction, or RPA hyperphosphorylation. Death in PIF1-depleted cells was detected in late G(1)/early S-phase and was dependent on caspase-3 activity. Taken together, our findings suggest roles for PIF1 in S-phase entry and progression that are essential to protect human tumor cells from apoptosis.


Assuntos
Apoptose/genética , Neoplasias Colorretais/enzimologia , DNA Helicases/genética , Caspase 3/metabolismo , Quinase 1 do Ponto de Checagem , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , DNA Helicases/antagonistas & inibidores , DNA Helicases/deficiência , DNA Helicases/metabolismo , Replicação do DNA/efeitos dos fármacos , Fase G1/fisiologia , Células HCT116 , Células HEK293 , Humanos , Proteínas Quinases/metabolismo , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Fase S/fisiologia , Timidina/antagonistas & inibidores , Timidina/metabolismo , Timidina/farmacologia , Transfecção
10.
Nucleic Acids Res ; 37(19): 6491-502, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19700773

RESUMO

Pif-1 proteins are 5'-->3' superfamily 1 (SF1) helicases that in yeast have roles in the maintenance of mitochondrial and nuclear genome stability. The functions and activities of the human enzyme (hPif1) are unclear, but here we describe its DNA binding and DNA remodeling activities. We demonstrate that hPif1 specifically recognizes and unwinds DNA structures resembling putative stalled replication forks. Notably, the enzyme requires both arms of the replication fork-like structure to initiate efficient unwinding of the putative leading replication strand of such substrates. This DNA structure-specific mode of initiation of unwinding is intrinsic to the conserved core helicase domain (hPifHD) that also possesses a strand annealing activity as has been demonstrated for the RecQ family of helicases. The result of hPif1 helicase action at stalled DNA replication forks would generate free 3' ends and ssDNA that could potentially be used to assist replication restart in conjunction with its strand annealing activity.


Assuntos
DNA Helicases/metabolismo , Replicação do DNA , DNA/metabolismo , DNA/química , DNA Helicases/química , DNA de Cadeia Simples/metabolismo , Humanos , Estrutura Terciária de Proteína
11.
Melanoma Res ; 13(5): 435-40, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14512784

RESUMO

Microsatellite instability (MSI) is a distinct tumour phenotype that is associated with alterations of DNA mismatch repair and is being increasingly reported in a number of hereditary and sporadic tumours. Numerous reports have suggested that melanocytic neoplasms, including cutaneous melanomas, frequently demonstrate low frequency MSI, whilst a small number of tumours exhibit high frequency MSI. Furthermore, loss of expression of DNA mismatch repair proteins has been associated with progression from benign to malignant disease in melanocytic neoplasms, but the presence or absence of mismatch repair defects in uveal melanomas has yet to be determined. This study was designed to establish whether MSI is a feature of these ocular melanomas. To investigate the prevalence of MSI in uveal melanomas, 52 tumours were analysed by polymerase chain reaction amplification of a panel of microsatellite markers selected for their ability to detect tumours exhibiting defects in DNA mismatch repair mechanisms. MSI was rarely detected in the 52 uveal melanomas analysed. All tumours demonstrated stable microsatellites at five of the six microsatellite markers tested (BAT26, BAT40, APC, D2S123 and Mfd15CA). Only one tumour showed the presence of a single unstable allele at a tetranucleotide marker (MYCL1). These data suggest that high frequency MSI does not occur in these tumours, and that low frequency MSI, in contrast to cutaneous melanoma, is a rare event in malignant melanomas of the uveal tract.


Assuntos
Sequência de DNA Instável , Melanoma/genética , Repetições de Microssatélites/genética , Neoplasias Uveais/genética , Pareamento Incorreto de Bases , Linhagem Celular Tumoral , Reparo do DNA , Marcadores Genéticos , Humanos , Fenótipo , Reação em Cadeia da Polimerase , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...