Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(4): 109591, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38632988

RESUMO

Targeting cancer metabolism to limit cellular energy and metabolite production is an attractive therapeutic approach. Here, we developed analogs of the bisbiguanide, alexidine, to target lung cancer cell metabolism and assess a structure-activity relationship (SAR). The SAR led to the identification of two analogs, AX-4 and AX-7, that limit cell growth via G1/G0 cell-cycle arrest and are tolerated in vivo with favorable pharmacokinetics. Mechanistic evaluation revealed that AX-4 and AX-7 induce potent mitochondrial defects; mitochondrial cristae were deformed and the mitochondrial membrane potential was depolarized. Additionally, cell metabolism was rewired, as indicated by reduced oxygen consumption and mitochondrial ATP production, with an increase in extracellular lactate. Importantly, AX-4 and AX-7 impacted overall cell behavior, as these compounds reduced collective cell invasion. Taken together, our study establishes a class of bisbiguanides as effective mitochondria and cell invasion disrupters, and proposes bisbiguanides as promising approaches to limiting cancer metastasis.

2.
Antioxidants (Basel) ; 12(9)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37759963

RESUMO

A family of seven NADPH oxidase enzymes (Nox1-5, Duox1-2) has been implicated in a variety of diseases, including inflammatory lung diseases, neurodegenerative diseases, cardiovascular diseases, and cancer. Here, we report the results of our studies aimed at developing novel brain-permeable Nox2 inhibitors with potential application as neuroprotective agents. Using cell-based assays, we identified a novel Nox2 inhibitor, TG15-132, that prevents PMA-stimulated oxygen consumption and reactive oxygen species (superoxide radical anion and hydrogen peroxide) formation upon acute treatment in differentiated HL60 cells. Long-term treatment with TG15-132 attenuates the induction of genes encoding Nox2 subunits, several inflammatory cytokines, and iNOS in differentiated THP-1 cells. Moreover, TG15-132 shows a relatively long plasma half-life (5.6 h) and excellent brain permeability, with a brain-to-plasma ratio (>5-fold) in rodent models. Additionally, TG15-132 does not cause any toxic effects on vital organs or blood biomarkers of toxicity in mice upon chronic dosing for seven days. We propose that TG15-132 may be used as a Nox2 inhibitor and a potential neuroprotective agent, with possible further structural modifications to increase its potency.

3.
J Med Chem ; 66(14): 9313-9324, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37458373

RESUMO

Cyclooxygenase-1 and -2 (COX1 and COX2) derived endogenous ligand prostaglandin-E2 (PGE2) triggers several physiological and pathological conditions. It mediates signaling through four G-protein coupled receptors, EP1, EP2, EP3, and EP4. Among these, EP2 is expressed throughout the body including the brain and uterus. The functional role of EP2 has been extensively studied using EP2 gene knockout mice, cellular models, and selective small molecule agonists and antagonists for this receptor. The efficacy data from in vitro and in vivo animal models indicate that EP2 receptor is a major proinflammatory mediator with deleterious functions in a variety of diseases suggesting a path forward for EP2 inhibitors as the next generation of selective anti-inflammatory and antiproliferative agents. Interestingly in certain diseases, EP2 action is beneficial; therefore, EP2 agonists seem to be clinically useful. Here, we highlight the strengths, weaknesses, opportunities, and potential threats (SWOT analysis) for targeting EP2 receptor for therapeutic development for a variety of unmet clinical needs.


Assuntos
Dinoprostona , Receptores de Prostaglandina E , Animais , Camundongos , Receptores de Prostaglandina E/agonistas , Receptores de Prostaglandina E/genética , Dinoprostona/farmacologia , Dinoprostona/fisiologia , Ciclo-Oxigenase 2 , Descoberta de Drogas , Receptores de Prostaglandina E Subtipo EP2 , Receptores de Prostaglandina E Subtipo EP4
4.
bioRxiv ; 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37214943

RESUMO

SARS-CoV-2-induced impaired antiviral and excessive inflammatory responses cause fatal pneumonia. However, the key pattern recognition receptors that elicit effective antiviral and lethal inflammatory responses in-vivo are not well defined. CoVs possess single-stranded RNA (ssRNA) genome that is abundantly produced during infection and stimulates both antiviral interferon (IFN) and inflammatory cytokine/ chemokine responses. Therefore, in this study, using wild-type control and TLR7 deficient BALB/c mice infected with a mouse-adapted SARS-COV-2 (MA-CoV-2), we evaluated the role of TLR7 signaling in MA-CoV-2-induced antiviral and inflammatory responses and disease outcome. We show that TLR7-deficient mice are more susceptible to MA-CoV-2 infection as compared to infected control mice. Further evaluation of MA-CoV-2 infected lungs showed significantly reduced mRNA levels of antiviral type I (IFNα/ß) and type III (IFNλ) IFNs, IFN stimulated genes (ISGs, ISG15 and CXCL10), and several pro-inflammatory cytokines/chemokines in TLR7 deficient compared to control mice. Reduced lung IFN/ISG levels and increased morbidity/mortality in TLR7 deficient mice correlated with high lung viral titer. Detailed examination of total cells from MA-CoV-2 infected lungs showed high neutrophil count in TLR7 deficient mice compared to control mice. Additionally, blocking TLR7 activity post-MA-CoV-2 infection using a specific inhibitor also enhanced disease severity. In summary, our results conclusively establish that TLR7 signaling is protective during SARS-CoV-2 infection, and despite robust inflammatory response, TLR7-mediated IFN/ISG responses likely protect the host from lethal disease. Given similar outcomes in control and TLR7 deficient humans and mice, these results show that MA-CoV-2 infected mice serve as excellent model to study COVID-19.

5.
ACS Pharmacol Transl Sci ; 6(1): 128-138, 2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36654746

RESUMO

Traumatic brain injury (TBI) in patients results in a massive inflammatory reaction, disruption of blood-brain barrier, and oxidative stress in the brain, and these inciting features may culminate in the emergence of post-traumatic epilepsy (PTE). We hypothesize that targeting these pathways with pharmacological agents could be an effective therapeutic strategy to prevent epileptogenesis. To design therapeutic strategies targeting neuroinflammation and oxidative stress, we utilized a fluid percussion injury (FPI) rat model to study the temporal expression of neuroinflammatory and oxidative stress markers from 3 to 24 h following FPI. FPI results in increased mRNA expression of inflammatory mediators including cyclooxygenase-2 (COX-2) and prostanoid receptor EP2, marker of oxidative stress (NOX2), astrogliosis (GFAP), and microgliosis (CD11b) in ipsilateral cortex and hippocampus. The analysis of protein levels indicated a significant increase in the expression of COX-2 in ipsilateral hippocampus and cortex post-FPI. We tested FPI rats with an EP2 antagonist TG8-260 which produced a statistically significant reduction in the distribution of seizure duration post-FPI and trends toward a reduction in seizure incidence, seizure frequency, and duration, hinting a proof of concept that EP2 antagonism must be further optimized for therapeutic applications to prevent epileptogenesis.

6.
Neuropharmacology ; 224: 109356, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36460083

RESUMO

Cognitive comorbidities can substantially reduce quality of life in people with epilepsy. Inflammation is a component of all chronic diseases including epilepsy, as well as acute events like status epilepticus (SE). Neuroinflammation is the consequence of several broad signaling cascades including cyclooxygenase-2 (COX-2)-associated pathways. Activation of the EP2 receptor for prostaglandin E2 appears responsible for blood-brain barrier leakage and much of the inflammatory reaction, neuronal injury and cognitive deficit that follows seizure-provoked COX-2 induction in brain. Here we show that brief exposure of mice to TG11-77, a potent, selective, orally available and brain permeant EP2 antagonist, eliminates the profound cognitive deficit in Y-maze performance after SE and reduces delayed mortality and microgliosis, with a minimum effective i.p. dose (as free base) of 8.8 mg/kg. All in vitro studies required to submit an investigational new drug (IND) application for TG11-77 have been completed, and non-GLP dose range-finding toxicology in the rat identified no overt, organ or histopathology signs of toxicity after 7 days of oral administration at 1000 mg/kg/day. Plasma exposure in the rat was dose-linear between 15 and 1000 mg/kg dosing. TG11-77 thus appears poised to continue development towards the initial clinical test of the hypothesis that EP2 receptor modulation after SE can provide the first preventive treatment for one of the chief comorbidities of epilepsy.


Assuntos
Epilepsia , Estado Epiléptico , Ratos , Camundongos , Animais , Ciclo-Oxigenase 2/metabolismo , Qualidade de Vida , Receptores de Prostaglandina E Subtipo EP2 , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/tratamento farmacológico , Estado Epiléptico/metabolismo , Inflamação , Cognição
7.
ACS Pharmacol Transl Sci ; 5(2): 118-133, 2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35187419

RESUMO

EP2, a G-protein-coupled prostaglandin-E2 receptor, has emerged as a seminal biological target for drug discovery. EP2 receptor activation is typically proinflammatory; therefore, the development of EP2 antagonists to mitigate the severity and disease pathology in a variety of inflammation-driven central nervous system and peripheral disorders would be a novel strategy. We have recently developed a second-generation EP2 antagonist TG8-260 and shown that it reduces hippocampal neuroinflammation and gliosis after pilocarpine-induced status epilepticus in rats. Here, we present details of synthesis, lead optimization on earlier leads that resulted in TG8-260, potency and selectivity evaluations using cAMP-driven time-resolved fluorescence resonance energy-transfer (TR-FRET) assays and [H3]-PGE2-binding assays, absorption, distribution, metabolism, and excretion (ADME), and pharmacokinetics. TG8-260 (2f) showed Schild K B = 13.2 nM (3.6-fold more potent than the previous lead TG8-69 (1c)) and 500-fold selectivity to EP2 against other prostanoid receptors. Pharmacokinetic data indicated that TG8-260 has a plasma half-life of 2.14 h (PO) and excellent oral bioavailability (77.3%). Extensive ADME tests indicated that TG8-260 is a potent inhibitor of CYP450 enzymes. Further, we show that TG8-260 displays antagonistic activity on the induction of EP2 receptor-mediated inflammatory gene expression in microglia BV2-hEP2 cells; therefore, it can serve as a tool for investigating anti-inflammatory pathways in peripheral inflammatory disease animal models.

8.
Biomed Pharmacother ; 147: 112646, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35091236

RESUMO

The EP2 receptor has emerged as a therapeutic target with exacerbating role in disease pathology for a variety of peripheral and central nervous system disorders. We and others have recently demonstrated beneficial effects of EP2 antagonists in preclinical models of neuroinflammation and peripheral inflammation. However, it was earlier reported that mice with global EP2 knockout (KO) display adverse phenotypes on fertility and blood pressure. Other studies indicated that EP2 activation with an agonist has a beneficial effect of healing fractured bone in animal models. These results impeded the development of EP2 antagonists, and EP2 antagonism as therapeutic strategy. To determine whether treatment with EP2 antagonist mimics the adverse phenotypes of the EP2 global KO mouse, we tested two EP2 antagonists TG11-77. HCl and TG6-10-1 in mice and rats while they are on normal or high-salt diet, and by two different administration protocols (acute and chronic). There were no adverse effects of the antagonists on systolic and diastolic blood pressure, heart rate, respiratory function in mice and rats regardless of rodents being on a regular or high salt diet. Furthermore, chronic exposure to TG11-77. HCl produced no adverse effects on blood cell counts, bone-volume and bone-mineral density in mice. Our findings argue against adverse effects on cardiovascular and respiratory systems, blood counts and bone structure in healthy rodents from the use of small molecule reversible antagonists for EP2, in contrast to the genetic ablation model. This study paves the way for advancing therapeutic applications of EP2 antagonists against diseases involving EP2 dysfunction.


Assuntos
Doenças Cardiovasculares/patologia , Receptores de Prostaglandina E Subtipo EP2/antagonistas & inibidores , Animais , Contagem de Células Sanguíneas , Densidade Óssea/efeitos dos fármacos , Osso e Ossos/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Hemodinâmica/efeitos dos fármacos , Indóis/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Ratos , Ratos Sprague-Dawley , Taxa Respiratória/efeitos dos fármacos
9.
Nat Metab ; 3(12): 1694-1705, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34931082

RESUMO

Obesity and obesity-related metabolic disorders are linked to the intestinal microbiome. However, the causality of changes in the microbiome-host interaction affecting energy metabolism remains controversial. Here, we show the microbiome-derived metabolite δ-valerobetaine (VB) is a diet-dependent obesogen that is increased with phenotypic obesity and is correlated with visceral adipose tissue mass in humans. VB is absent in germ-free mice and their mitochondria but present in ex-germ-free conventionalized mice and their mitochondria. Mechanistic studies in vivo and in vitro show VB is produced by diverse bacterial species and inhibits mitochondrial fatty acid oxidation through decreasing cellular carnitine and mitochondrial long-chain acyl-coenzyme As. VB administration to germ-free and conventional mice increases visceral fat mass and exacerbates hepatic steatosis with a western diet but not control diet. Thus, VB provides a molecular target to understand and potentially manage microbiome-host symbiosis or dysbiosis in diet-dependent obesity.


Assuntos
Metabolismo Energético , Interações entre Hospedeiro e Microrganismos , Microbiota , Obesidade/metabolismo , Adiposidade , Animais , Dieta Ocidental , Ácidos Graxos/metabolismo , Microbioma Gastrointestinal , Humanos , Metabolismo dos Lipídeos , Fígado/metabolismo , Camundongos , Mitocôndrias/metabolismo , Obesidade/etiologia , Oxirredução
10.
J Neuroinflammation ; 18(1): 273, 2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34801055

RESUMO

BACKGROUND: Alzheimer's disease (AD) causes substantial medical and societal burden with no therapies ameliorating cognitive deficits. Centralized pathologies involving amyloids, neurofibrillary tangles, and neuroinflammatory pathways are being investigated to identify disease-modifying targets for AD. Cyclooxygenase-2 (COX-2) is one of the potential neuroinflammatory agents involved in AD progression. However, chronic use of COX-2 inhibitors in patients produced adverse cardiovascular effects. We asked whether inhibition of EP2 receptors, downstream of the COX-2 signaling pathway, can ameliorate neuroinflammation in AD brains in presence or absence of a secondary inflammatory stimuli. METHODS: We treated 5xFAD mice and their non-transgenic (nTg) littermates in presence or absence of lipopolysaccharide (LPS) with an EP2 antagonist (TG11-77.HCl). In cohort 1, nTg (no-hit) or 5xFAD (single-hit-genetic) mice were treated with vehicle or TG11-77.HCl for 12 weeks. In cohort 2, nTg (single-hit-environmental) and 5xFAD mice (two-hit) were administered LPS (0.5 mg/kg/week) and treated with vehicle or TG11-77.HCl for 8 weeks. RESULTS: Complete blood count analysis showed that LPS induced anemia of inflammation in both groups in cohort 2. There was no adverse effect of LPS or EP2 antagonist on body weight throughout the treatment. In the neocortex isolated from the two-hit cohort of females, but not males, the elevated mRNA levels of proinflammatory mediators (IL-1ß, TNF, IL-6, CCL2, EP2), glial markers (IBA1, GFAP, CD11b, S110B), and glial proteins were significantly reduced by EP2 antagonist treatment. Intriguingly, the EP2 antagonist had no effect on either of the single-hit cohorts. There was a modest increase in amyloid-plaque deposition upon EP2 antagonist treatment in the two-hit female brains, but not in the single-hit genetic female cohort. CONCLUSION: These results reveal a potential neuroinflammatory role for EP2 in the two-hit 5xFAD mouse model. A selective EP2 antagonist reduces inflammation only in female AD mice subjected to a second inflammatory insult.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Doenças Neuroinflamatórias/tratamento farmacológico , Receptores de Prostaglandina E Subtipo EP2/antagonistas & inibidores , Doença de Alzheimer/patologia , Anemia/sangue , Animais , Contagem de Células Sanguíneas , Ciclo-Oxigenase 2/genética , Feminino , Humanos , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Transgênicos , Neuroglia/metabolismo , Doenças Neuroinflamatórias/patologia , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Caracteres Sexuais , Transdução de Sinais/efeitos dos fármacos
11.
PLoS One ; 16(7): e0254632, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34280220

RESUMO

Superoxide radicals and other reactive oxygen species (ROS) are implicated in influenza A virus-induced inflammation. In this in vitro study, we evaluated the effects of TG6-44, a novel quinazolin-derived myeloperoxidase-specific ROS inhibitor, on influenza A virus (A/X31) infection using THP-1 lung monocytic cells and freshly isolated peripheral blood mononuclear cells (PBMC). TG6-44 significantly decreased A/X31-induced ROS and virus-induced inflammatory mediators in THP-1 cells (IL-6, IFN-γ, MCP-1, TNF-α, MIP-1ß) and in human PBMC (IL-6, IL-8, TNF-α, MCP-1). Interestingly, TG6-44-treated THP-1 cells showed a decrease in percent cells expressing viral nucleoprotein, as well as a delay in translocation of viral nucleoprotein into the nucleus. Furthermore, in influenza A virus-infected cells, TG6-44 treatment led to suppression of virus-induced cell death as evidenced by decreased caspase-3 activation, decreased proportion of Annexin V+PI+ cells, and increased Bcl-2 phosphorylation. Taken together, our results demonstrate the anti-inflammatory and anti-infective effects of TG6-44.


Assuntos
Mediadores da Inflamação/farmacologia , Inflamação/tratamento farmacológico , Vírus da Influenza A/efeitos dos fármacos , Peroxidase/antagonistas & inibidores , Espécies Reativas de Oxigênio/antagonistas & inibidores , Sobrevivência Celular/efeitos dos fármacos , Quimiocina CCL2/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Inflamação/patologia , Inflamação/virologia , Vírus da Influenza A/patogenicidade , Interleucina-6/genética , Interleucina-8/genética , Leucócitos Mononucleares/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Pulmão/patologia , Peroxidase/genética , Quinazolinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Superóxidos/metabolismo , Fator de Necrose Tumoral alfa/genética
12.
Neurotherapeutics ; 18(2): 1207-1225, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33410110

RESUMO

Prostaglandin-E2 (PGE2), an important mediator of inflammation, achieves its functions via four different G protein-coupled receptors (EP1, EP2, EP3, and EP4). We previously demonstrated that the EP2 receptor plays a proinflammatory and neurodegenerative role after status epilepticus (SE). We recently developed TG8-260 as a second-generation highly potent and selective EP2 antagonist. Here, we investigate whether TG8-260 is anti-inflammatory and combats neuropathology caused by pilocarpine-induced SE in rats. Adult male Sprague-Dawley rats were injected subcutaneously with pilocarpine (380-400 mg/kg) to induce SE. Following 60 min of SE, the rats were administered three doses of TG8-260 or vehicle and were allowed to recover. Neurodegeneration, neuroinflammation, gliosis, and blood-brain barrier (BBB) integrity were examined 4 days after SE. The results confirmed that pilocarpine-induced SE results in hippocampal neurodegeneration and a robust inflammatory response that persists days after SE. Furthermore, inhibition of the EP2 receptor by TG8-260 administered beginning 2 h after SE significantly reduced hippocampal neuroinflammation and gliosis but, in distinction to the earlier generation EP2 antagonist, did not mitigate neuronal injury or BBB breakdown. Thus, attenuation of neuroinflammation and gliosis is a common feature of EP2 inhibition following SE.


Assuntos
Gliose/tratamento farmacológico , Mediadores da Inflamação/antagonistas & inibidores , Antagonistas de Prostaglandina/uso terapêutico , Receptores de Prostaglandina E Subtipo EP2/antagonistas & inibidores , Estado Epiléptico/tratamento farmacológico , Animais , Linhagem Celular , Relação Dose-Resposta a Droga , Gliose/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Masculino , Camundongos , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/metabolismo , Pilocarpina/toxicidade , Antagonistas de Prostaglandina/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de Prostaglandina E Subtipo EP2/metabolismo , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/metabolismo
13.
J Neurosci ; 41(5): 1105-1117, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33293358

RESUMO

A multidimensional inflammatory response ensues after status epilepticus (SE), driven partly by cyclooxygenase-2-mediated activation of prostaglandin EP2 receptors. The inflammatory response is typified by astrocytosis, microgliosis, erosion of the blood-brain barrier (BBB), formation of inflammatory cytokines, and brain infiltration of blood-borne monocytes. Our previous studies have shown that inhibition of monocyte brain invasion or systemic administration of an EP2 receptor antagonist relieves multiple deleterious consequences of SE. Here we identify those effects of EP2 antagonism that are reproduced by conditional ablation of EP2 receptors in immune myeloid cells and show that systemic EP2 antagonism blocks monocyte brain entry in male mice. The induction of hippocampal IL-6 after pilocarpine SE was nearly abolished in EP2 conditional KO mice. Serum albumin levels in the cortex, a measure of BBB breakdown, were significantly higher after SE in EP2-sufficient mice but not in EP2 conditional KOs. EP2 deficiency in innate immune cells accelerated the recovery from sickness behaviors following SE. Surprisingly, neurodegeneration was not alleviated in myeloid conditional KOs. Systemic EP2 antagonism prevented monocyte brain infiltration and provided broader rescue of SE-induced effects than myeloid EP2 ablation, including neuroprotection and broader suppression of inflammatory mediators. Reporter expression indicated that the cellular target of CD11b-driven Cre was circulating myeloid cells but, unexpectedly, not microglia. These findings indicate that activation of EP2 receptors on immune myeloid cells drives substantial deficits in behavior and disrupts the BBB after SE. The benefits of systemic EP2 antagonism can be attributed, in part, to blocking brain recruitment of blood-borne monocytes.SIGNIFICANCE STATEMENT Unabated seizures reduce quality of life, promote the development of epilepsy, and can be fatal. We previously identified activation of prostaglandin EP2 receptors as a driver of undesirable consequences of seizures. However, the relevant EP2-expressing cell types remain unclear. Here we identify peripheral innate immune cells as a driver of the EP2-related negative consequences of seizures. Removal of EP2 from peripheral immune cells was beneficial, abolishing production of a key inflammatory cytokine, accelerating weight regain, and limiting behavioral deficits. These findings provide evidence that EP2 engagement on peripheral immune and brain endothelia contributes to the deleterious effects of SE, and will assist in the development of beneficial therapies to enhance quality of life in individuals who suffer prolonged seizures.


Assuntos
Imunidade Inata/fisiologia , Células Mieloides/metabolismo , Receptores de Prostaglandina E Subtipo EP2/biossíntese , Estado Epiléptico/metabolismo , Animais , Citometria de Fluxo/métodos , Hipocampo/citologia , Hipocampo/imunologia , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Células Mieloides/imunologia , Receptores de Prostaglandina E Subtipo EP2/genética , Receptores de Prostaglandina E Subtipo EP2/imunologia , Estado Epiléptico/genética , Estado Epiléptico/imunologia
14.
Bioorg Med Chem ; 28(24): 115830, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33161343

RESUMO

Azaindole structural framework is an integral part of several biologically active natural and synthetic organic molecules; and several FDA approved drugs for various diseases. In the last decade, quite a number of literature reports appeared describing the pharmacology, biological activity and therapeutic applications of a variety of azaindole molecules. This prompted the organic and medicinal chemistry community to develop novel synthetic methods for various azaindoles and test them for a bioactivity against a variety of biological targets. Herein, we have summarized the biological activity of therapeutically advanced clinical candidates and several preclinical candidate drugs that contain azaindole structural moiety.


Assuntos
Compostos Aza/química , Indóis/química , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/uso terapêutico , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Humanos , Hipersensibilidade/tratamento farmacológico , Indóis/farmacologia , Indóis/uso terapêutico , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/patologia
15.
ACS Chem Neurosci ; 11(10): 1436-1446, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32324375

RESUMO

All reported prostaglandin EP2 receptor antagonists have a purely orthosteric, competitive mode of action. Herein, we report the characterization of compound 1 (pubchem CID 664888) as the first EP2 antagonist that features a reversible, agonist dependent allosteric mode of action. Compound 1 displayed an unsurmountable inhibition of cAMP accumulation stimulated by different EP2 agonists in C6 glioma cells overexpressing human EP2 (C6G-hEP2). The degree of reduction of agonist potency and efficacy depended on the agonist employed. Negative allosteric modulation was not observed in C6G cells overexpressing human EP4, IP, or DP1 receptors. Moreover, in the murine microglial cell line that stably expresses human EP2 receptors (BV2-hEP2), compound 1 reduced the EP2 agonist-induced elevation of interleukin 6 (IL-6), IL-1ß, and hEP2 mRNA levels and increased that of tumor necrosis factor (TNF)-α. Compound 1 was docked into a homology model of hEP2. The predicted binding site on the cytoplasmic receptor surface was similar to that of allosteric inhibitors of the ß2-adrenergic, CC chemokine receptor 9 (CCR9), and CC chemokine receptor 2 (CCR2) receptors, which supports the notion of a conserved G-protein-coupled receptor (GPCR) binding pocket for allosteric inhibitors. As the first agonist dependent negative allosteric modulator of EP2 receptor, the structure of this compound may provide a basis for developing improved allosteric modulators of EP2 receptors.


Assuntos
Receptores de Prostaglandina E Subtipo EP2 , Animais , Humanos , Interleucina-6 , Camundongos , Prostaglandinas , Fator de Necrose Tumoral alfa
16.
J Med Chem ; 63(3): 1032-1050, 2020 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-31904232

RESUMO

Activation of prostanoid EP2 receptor exacerbates neuroinflammatory and neurodegenerative pathology in central nervous system diseases such as epilepsy, Alzheimer's disease, and cerebral aneurysms. A selective and brain-permeable EP2 antagonist will be useful to attenuate the inflammatory consequences of EP2 activation and to reduce the severity of these chronic diseases. We recently developed a brain-permeable EP2 antagonist 1 (TG6-10-1), which displayed anti-inflammatory and neuroprotective actions in rodent models of status epilepticus. However, this compound exhibited moderate selectivity to EP2, a short plasma half-life in rodents (1.7 h) and low aqueous solubility (27 µM), limiting its use in animal models of chronic disease. With lead-optimization studies, we have developed several novel EP2 antagonists with improved water solubility, brain penetration, high EP2 potency, and selectivity. These novel inhibitors suppress inflammatory gene expression induced by EP2 receptor activation in a microglial cell line, reinforcing the use of EP2 antagonists as anti-inflammatory agents.


Assuntos
Anti-Inflamatórios/farmacologia , Indóis/farmacologia , Fármacos Neuroprotetores/farmacologia , Receptores de Prostaglandina E Subtipo EP2/antagonistas & inibidores , Animais , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/farmacocinética , Linhagem Celular , Doenças do Sistema Nervoso Central/metabolismo , Humanos , Indóis/síntese química , Indóis/farmacocinética , Masculino , Camundongos , Microglia/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/farmacocinética , Solubilidade , Relação Estrutura-Atividade , Água/química
17.
Brain Behav Immun Health ; 8: 100132, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34589882

RESUMO

Long-term cognitive and affective impairments are common problems in the survivors of sepsis, which weakens their vocational and daily life ability. Neuroinflammation has been reported to exert a key role in the development of cognitive deficit in different disorders including epilepsy, Alzheimer's disease (AD) and stroke. Mice treated with lipopolysaccharide (LPS), an endotoxin produced by gram-negative bacteria, show a robust but short-lived neuroinflammation and develop long-term memory and affective problems. In this study, we test the hypothesis that pharmacological blockade of the EP2 receptor for prostaglandin E2 reduces neuroinflammation and prevents long-term affective and memory deficits in a mouse model of LPS-induced, sepsis-associated encephalopathy (SAE). Our results show that an EP2 antagonist, TG6-10-1, promotes the recovery of body weight, mitigates neuroinflammation as judged by inflammatory cytokines and microgliosis, prevents the loss of synaptic proteins, and ameliorates depression-like behavior in the sucrose preference test as well as memory loss in the novel object recognition test. Our results point to a new avenue to ameliorate neuroinflammation and long-term affective and cognition problems of sepsis survivors.

18.
Neurobiol Dis ; 133: 104399, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30818067

RESUMO

This review describes an adult rat model of status epilepticus (SE) induced by diisopropyl fluorophosphate (DFP), and the beneficial outcomes of transient inhibition of the prostaglandin-E2 receptor EP2 with a small molecule antagonist, delayed by 2-4 h after SE onset. Administration of six doses of the selective EP2 antagonist TG6-10-1 over a 2-3 day period accelerates functional recovery, attenuates hippocampal neurodegeneration, neuroinflammation, gliosis and blood-brain barrier leakage, and prevents long-term cognitive deficits without blocking SE itself or altering acute seizure characteristics. This work has provided important information regarding organophosphate-induced seizure related pathologies in adults and revealed the effectiveness of delayed EP2 inhibition to combat these pathologies.


Assuntos
Indóis/farmacologia , Intoxicação por Organofosfatos , Receptores de Prostaglandina E Subtipo EP2/antagonistas & inibidores , Estado Epiléptico/induzido quimicamente , Animais , Inibidores da Colinesterase/toxicidade , Modelos Animais de Doenças , Isoflurofato/toxicidade , Ratos
19.
Neuropharmacology ; 172: 107907, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31837825

RESUMO

Traumatic brain injury (TBI) is a leading cause of death and disability in young adults worldwide. TBI survival is associated with persistent neuropsychiatric and neurological impairments, including posttraumatic epilepsy (PTE). To date, no pharmaceutical treatment has been found to prevent PTE or ameliorate neurological/neuropsychiatric deficits after TBI. Brain trauma results in immediate mechanical damage to brain cells and blood vessels that may never be fully restored given the limited regenerative capacity of brain tissue. This primary insult unleashes cascades of events, prominently including neuroinflammation and massive oxidative stress that evolve over time, expanding the brain injury, but also clearing cellular debris and establishing homeostasis in the region of damage. Accumulating evidence suggests that oxidative stress and neuroinflammatory sequelae of TBI contribute to posttraumatic epileptogenesis. This review will focus on possible roles of reactive oxygen species (ROS), their interactions with neuroinflammation in posttraumatic epileptogenesis, and emerging therapeutic strategies after TBI. We propose that inhibitors of the professional ROS-generating enzymes, the NADPH oxygenases and myeloperoxidase alone, or combined with selective inhibition of cyclooxygenase mediated signaling may have promise for the treatment or prevention of PTE and other sequelae of TBI. This article is part of the special issue entitled 'New Epilepsy Therapies for the 21st Century - From Antiseizure Drugs to Prevention, Modification and Cure of Epilepsy'.


Assuntos
Lesões Encefálicas Traumáticas/terapia , Encefalite/tratamento farmacológico , Epilepsia Pós-Traumática/prevenção & controle , Estresse Oxidativo/efeitos dos fármacos , Animais , Lesões Encefálicas Traumáticas/complicações , Epilepsia Pós-Traumática/etiologia , Humanos , NADPH Oxidases/antagonistas & inibidores , NADPH Oxidases/metabolismo , Peroxidase/antagonistas & inibidores , Peroxidase/metabolismo
20.
ACS Chem Neurosci ; 10(10): 4280-4292, 2019 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-31469538

RESUMO

Recently, EP2 signaling pathways were shown to regulate the classical activation and death of microglia in rat primary microglial culture. The study of microglial cells has been challenging because they are time-consuming to isolate in culture, they are demanding in their growth requirements, and they have a limited lifespan. To circumvent these difficulties, we created a murine BV2 microglial cell line stably expressing human EP2 receptors (BV2-hEP2) and further explored EP2 modulation of microglial functions. The BV2-hEP2 cells displayed cAMP elevation when exposed to the selective EP2 receptor agonists (ONO-AE1-259-1 and CP544326), and this response was competitively inhibited by TG4-155, a selective EP2 antagonist (Schild KB = 2.6 nM). By contrast, untransfected BV2 cells were unresponsive to selective EP2 agonists. Similar to the case of rat primary microglia, BV2-hEP2 microglia treated with lipopolysaccharide (LPS) (100 ng/mL) displayed rapid and robust induction of the inflammatory mediators COX-2, IL-1ß, TNFα, and IL-6. EP2 activation depressed TNFα induction but exacerbated that of the other inflammatory mediators. Like primary microglia, classically activated BV2 microglia phagocytose fluorescent-labeled latex microspheres. The presence of EP2, but not its activation by agonists, in BV2-hEP2 microglia reduced phagocytosis and proliferation by 65% and 32%, respectively, compared to BV2 microglia. Thus, BV2-hEP2 is the first microglial cell line that retains the EP2 modulation of immune regulation and phagocytic ability of native microglia. Suppression of phagocytosis by the EP2 protein appears unrelated to classical EP2 signaling pathways, which has implications for therapeutic development of EP2 antagonists.


Assuntos
Microglia/metabolismo , Receptores de Prostaglandina E Subtipo EP2/metabolismo , Acetatos/farmacologia , Animais , Linhagem Celular , Proliferação de Células/fisiologia , AMP Cíclico/metabolismo , Dinoprostona/análogos & derivados , Dinoprostona/farmacologia , Humanos , Camundongos , Microglia/efeitos dos fármacos , Fagocitose/fisiologia , Receptores de Prostaglandina E Subtipo EP2/genética , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...