Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Astrobiology ; 24(1): 114-129, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38227837

RESUMO

The 2-week, virtual Future of the Search for Life science and engineering workshop brought together more than 100 scientists, engineers, and technologists in March and April 2022 to provide their expert opinion on the interconnections between life-detection science and technology. Participants identified the advances in measurement and sampling technologies they believed to be necessary to perform in situ searches for life elsewhere in our Solar System, 20 years or more in the future. Among suggested measurements for these searches, those pertaining to three potential indicators of life termed "dynamic disequilibrium," "catalysis," and "informational polymers" were identified as particularly promising avenues for further exploration. For these three indicators, small breakout groups of participants identified measurement needs and knowledge gaps, along with corresponding constraints on sample handling (acquisition and processing) approaches for a variety of environments on Enceladus, Europa, Mars, and Titan. Despite the diversity of these environments, sample processing approaches all tend to be more complex than those that have been implemented on missions or envisioned for mission concepts to date. The approaches considered by workshop breakout groups progress from nondestructive to destructive measurement techniques, and most involve the need for fluid (especially liquid) sample processing. Sample processing needs were identified as technology gaps. These gaps include technology and associated sampling strategies that allow the preservation of the thermal, mechanical, and chemical integrity of the samples upon acquisition; and to optimize the sample information obtained by operating suites of instruments on common samples. Crucially, the interplay between science-driven life-detection strategies and their technological implementation highlights the need for an unprecedented level of payload integration and extensive collaboration between scientists and engineers, starting from concept formulation through mission deployment of life-detection instruments and sample processing systems.


Assuntos
Júpiter , Marte , Saturno , Humanos , Meio Ambiente Extraterreno , Exobiologia/métodos
2.
Astrobiology ; 21(12): 1526-1546, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34889663

RESUMO

Hydrothermal systems host microbial communities that include some of the most deeply branching members of the tree of life, and recent work has suggested that terrestrial hot springs may have provided ideal conditions for the origin of life. Hydrothermal microbial communities are a potential source for biosignatures, and the presence of terrestrial hot spring deposits in 3.48 Ga rocks as well as on the surface of Mars lends weight to a need to better understand the preservation of biosignatures in these systems. Although there are general patterns of elemental enrichment in hydrothermal water dependent on physical and geochemical conditions, the elemental composition of bulk hydrothermal microbial communities (here termed biocumulus, including cellular biomass and accumulated non-cellular material) is largely unexplored. However, recent work has suggested both bulk and spatial trace element enrichment as a potential biosignature in hot spring deposits. To elucidate the elemental composition of hot spring biocumulus samples and explore the sources of those elements, we analyzed a suite of 16 elements in hot spring water samples and corresponding biocumulus from 60 hot springs sinter samples, and rock samples from 8 hydrothermal areas across Yellowstone National Park. We combined these data with values reported in literature to assess the patterns of elemental uptake into biocumulus and retention in associated siliceous sinter. Hot spring biocumuli are of biological origin, but organic carbon comprises a minor percentage of the total mass of both thermophilic chemotrophic and phototrophic biocumulus. Instead, the majority of hot spring biocumulus is inorganic material-largely silica-and the distribution of major and trace elements mimics that of surrounding rock and soil rather than the hot spring fluids. Analyses indicate a systematic loss of biologically associated elements during diagenetic transformation of biocumulus to siliceous sinter, suggesting a potential for silica sinter to preserve a trace element biosignature.


Assuntos
Fontes Termais , Microbiota , Oligoelementos , Sedimentos Geológicos/química , Fontes Termais/química , Solo
3.
Life (Basel) ; 11(2)2021 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-33668639

RESUMO

Identifying microbial fossils in the rock record is a difficult task because they are often simple in morphology and can be mimicked by non-biological structures. Biosignatures are essential for identifying putative fossils as being definitively biological in origin, but are often lacking due to geologic effects which can obscure or erase such signs. As such, there is a need for robust biosignature identification techniques. Here we show new evidence for the application of trace elements as biosignatures in microfossils. We found elevated concentrations of magnesium, aluminum, manganese, iron, and strontium colocalized with carbon and sulfur in microfossils from Drummond Basin, a mid-Paleozoic hot spring deposit in Australia. Our results also suggest that trace element sequestrations from modern hot spring deposits persist through substantial host rock alteration. Because some of the oldest fossils on Earth are found in hot spring deposits and ancient hot spring deposits are also thought to occur on Mars, this biosignature technique may be utilized as a valuable tool to aid in the search for extraterrestrial life.

4.
Life (Basel) ; 10(1)2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31947527

RESUMO

Terrestrial hot springs have emerged as strong contenders for sites that could have facilitated the origin of life. Cycling between wet and dry conditions is a key feature of these systems, which can produce both structural and chemical complexity within protocellular material. Silica precipitation is a common phenomenon in terrestrial hot springs and is closely associated with life in modern systems. Not only does silica preserve evidence of hot spring life, it also can help it survive during life through UV protection, a factor which would be especially relevant on the early Earth. Determining which physical and chemical components of hot springs are the result of life vs. non-life in modern hot spring systems is a difficult task, however, since life is so prevalent in these environments. Using a model hot spring simulation chamber, we demonstrate a simple yet effective way to precipitate silica with or without the presence of life. This system may be valuable in further investigating the plausible role of silica precipitation in ancient terrestrial hot spring environments even before life arose, as well as its potential role in providing protection from the high surface UV conditions which may have been present on early Earth.

5.
Astrobiology ; 20(4): 525-536, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31859527

RESUMO

Uncovering and understanding the chemical and fossil record of ancient life is crucial to understanding how life arose, evolved, and distributed itself across Earth. Potential signs of ancient life, however, are often challenging to establish as definitively biological and require multiple lines of evidence. Hydrothermal silica deposits may preserve some of the most ancient evidence of life on Earth, and such deposits are also suggested to exist on the surface of Mars. Here we use micron-scale elemental mapping by secondary ion mass spectrometry to explore for trace elements that are preferentially sequestered by microbial life and subsequently preserved in hydrothermal deposits. The spatial distributions and concentrations of trace elements associated with life in such hydrothermal silica deposits may have a novel application as a biosignature in constraining ancient life on Earth as well as the search for evidence of past life on Mars. We find that active microbial mats and recent siliceous sinter deposits from an alkaline hot spring in Yellowstone National Park appear to sequester and preserve Ga, Fe, and perhaps Mn through early diagenesis as indicators of the presence of life during formation.


Assuntos
Sedimentos Geológicos/química , Fontes Termais , Dióxido de Silício/química , Oligoelementos/análise , Planeta Terra , Gálio/análise , Ferro/análise , Manganês/análise , Espectrometria de Massas , Montana , Origem da Vida
6.
Symmetry (Basel) ; 8(11)2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28078105

RESUMO

Craniofacial asymmetry is a convergent trait widely distributed across animals that colonize the extreme cave environment. Although craniofacial asymmetry can be discerned easily, other complex phenotypes (such as sensory organ position and numerical variation) are challenging to score and compare. Certain bones of the craniofacial complex demonstrate substantial asymmetry, and co-localize to regions harboring dramatically expanded numbers of mechanosensory neuromasts. To determine if a relationship exists between this expansion and bone fragmentation in cavefish, we developed a quantitative measure of positional symmetry across the left-right axis. We found that three different cave-dwelling populations were significantly more asymmetric compared to surface-dwelling fish. Moreover, cave populations did not differ in the degree of neuromast asymmetry. This work establishes a method for quantifying symmetry of a complex phenotype, and demonstrates that facial bone fragmentation mirrors the asymmetric distribution of neuromasts in different cavefish populations. Further developmental studies will provide a clearer picture of the developmental and cellular changes that accompany this extreme phenotype, and help illuminate the genetic basis for facial asymmetry in vertebrates.

7.
CourseSource ; 3: 1-13, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28936469

RESUMO

The development and implementation of a scientific outreach activity comes with a number of challenges. A successful outreach event must match the sophistication of content to the audience, be engaging, expand the knowledge base for participants, and be inclusive for a diverse audience. Ideally, a successful event will also convey the importance of scientific outreach for future scientists and citizens. In this paper, we present a simple, hands-on guide to a scientific outreach event targeted to kindergarten learners. This activity also pursued a second goal: the inclusion of undergraduate students in the development and delivery of the event. We provided a detailed set of four activities, focusing on the blind Mexican cavefish, which were enthusiastically received by kindergarten audiences. The engagement of undergraduate students in the development of this activity encouraged public outreach involvement and fostered new scientific and communication skills. The format of the outreach event we describe is flexible. We provide a set of guidelines and suggestions for adapting this approach to other biological topics. The activity and approach we describe enables the implementation of effective scientific outreach, using active learning approaches, which benefits both elementary school learners and undergraduate students.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...