Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Microbiol ; 24(1): 270, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39033146

RESUMO

BACKGROUND: The bacterial persistence, responsible for therapeutic failures, can arise from the biofilm formation, which possesses a high tolerance to antibiotics. This threat often occurs when a bone and joint infection is diagnosed after a prosthesis implantation. Understanding the biofilm mechanism is pivotal to enhance prosthesis joint infection (PJI) treatment and prevention. However, little is known on the characteristics of Cutibacterium acnes biofilm formation, whereas this species is frequently involved in prosthesis infections. METHODS: In this study, we compared the biofilm formation of C. acnes PJI-related strains and non-PJI-related strains on plastic support and textured titanium alloy by (i) counting adherent and viable bacteria, (ii) confocal scanning electronic microscopy observations after biofilm matrix labeling and (iii) RT-qPCR experiments. RESULTS: We highlighted material- and strain-dependent modifications of C. acnes biofilm. Non-PJI-related strains formed aggregates on both types of support but with different matrix compositions. While the proportion of polysaccharides signal was higher on plastic, the proportions of polysaccharides and proteins signals were more similar on titanium. The changes in biofilm composition for PJI-related strains was less noticeable. For all tested strains, biofilm formation-related genes were more expressed in biofilm formed on plastic that one formed on titanium. Moreover, the impact of C. acnes internalization in osteoblasts prior to biofilm development was also investigated. After internalization, one of the non-PJI-related strains biofilm characteristics were affected: (i) a lower quantity of adhered bacteria (80.3-fold decrease), (ii) an increase of polysaccharides signal in biofilm and (iii) an activation of biofilm gene expressions on textured titanium disk. CONCLUSION: Taken together, these results evidenced the versatility of C. acnes biofilm, depending on the support used, the bone environment and the strain.


Assuntos
Biofilmes , Infecções Relacionadas à Prótese , Titânio , Biofilmes/crescimento & desenvolvimento , Infecções Relacionadas à Prótese/microbiologia , Humanos , Aderência Bacteriana , Propionibacteriaceae/fisiologia , Propionibacteriaceae/genética , Propionibacteriaceae/efeitos dos fármacos , Próteses e Implantes/microbiologia , Osso e Ossos/microbiologia , Plásticos , Ligas , Propriedades de Superfície
2.
Antibiotics (Basel) ; 13(3)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38534722

RESUMO

Copper (I) oxide (cuprite) is a material widely used nowadays, and its versatility is further amplified when it is brought to the nanometric size. Among the possible applications of this nanomaterial, one of the most interesting is that in the medical field. This paper presents a cuprite nanopowder study with the aim of employing it in medical applications. With regards to the environmental context, the synthesis used is related to green chemistry since the technique (out-of-phase pulsed electrochemistry) uses few chemical products via electricity consumption and soft conditions of temperature and pressure. After different physico-chemical characterizations, the nanopowder was tested on the Candida albicans to determine its fungicide activity and on human blood to estimate its hemocompatibility. The results show that 2 mg of this nanopowder diluted in 30 µL Sabouraud broth was able to react with Candida albicans. The hemocompatibility tests indicate that for 25 to 100 µg/mL of nanopowder in an aqueous medium, the powder was not toxic for human blood (no hemolysis nor platelet aggregation) but promoted blood coagulation. It appears, therefore, as a potential candidate for the functionalization of matrices for medical applications (wound dressing or operating field, for example).

3.
Life (Basel) ; 14(2)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38398765

RESUMO

Disinfection in the hospital environment remains challenging, especially for wide and structurally complex objects such as beds or wheelchairs. Indeed, the regular disinfection of these objects with chemicals is manually carried out by healthcare workers and is fastidious and time-consuming. Alternative antibacterial techniques were thus proposed in the past decades, including the use of naturally antimicrobial UVC. Here, the antibacterial efficiency of a large UVC box built to accommodate wheelchairs was investigated through testing bacterial burden reductions on various parts of a wheelchair, with various support types and with several treatment durations. The results demonstrate a time-dependent antibacterial effect, with a strong burden reduction at only five minutes of treatment (>3-log median reduction in Escherichia coli and Staphylococcus epidermidis). The UVC flux and residual bacterial burden both significantly varied depending on the spatial location on the wheelchair. However, the nature of the support impacted the antibacterial efficiency even more, with residual bacterial burdens being the lowest on rigid materials (steel, plastics) and being the highest on tissue. On metallic samples, the nature of the alloy and surface treatment had various impacts on the antibacterial efficiency of the UVC. This study highlights the efficiency of the tested UVC box to efficiently and quickly decontaminate complex objects such as wheelchairs, but also gives rise to the warning to focus on rigid materials and avoid porous materials in the conception of objects, so as to ensure the efficiency of UVC decontamination.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA