Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Med ; 220(5)2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36828390

RESUMO

Metastatic cancer cells adapt to thrive in secondary organs. To investigate metastatic adaptation, we performed transcriptomic analysis of metastatic and non-metastatic murine breast cancer cells. We found that pleiotrophin (PTN), a neurotrophic cytokine, is a metastasis-associated factor that is expressed highly by aggressive breast cancers. Moreover, elevated PTN in plasma correlated significantly with metastasis and reduced survival of breast cancer patients. Mechanistically, we find that PTN activates NF-κB in cancer cells leading to altered cytokine production, subsequent neutrophil recruitment, and an immune suppressive microenvironment. Consequently, inhibition of PTN, pharmacologically or genetically, reduces the accumulation of tumor-associated neutrophils and reverts local immune suppression, resulting in increased T cell activation and attenuated metastasis. Furthermore, inhibition of PTN significantly enhanced the efficacy of immune checkpoint blockade and chemotherapy in reducing metastatic burden in mice. These findings establish PTN as a previously unrecognized driver of a prometastatic immune niche and thus represents a promising therapeutic target for the treatment of metastatic breast cancer.


Assuntos
Proteínas de Transporte , Neoplasias , Camundongos , Animais , Citocinas/metabolismo , NF-kappa B , Microambiente Tumoral
2.
Nat Commun ; 13(1): 7959, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36575174

RESUMO

The progression of cancer from localized to metastatic disease is the primary cause of morbidity and mortality. The interplay between the tumor and its microenvironment is the key driver in this process of tumor progression. In order for tumors to progress and metastasize they must reprogram the cells that make up the microenvironment to promote tumor growth and suppress endogenous defense systems, such as the immune and inflammatory response. We have previously demonstrated that stimulation of Tsp-1 in the tumor microenvironment (TME) potently inhibits tumor growth and progression. Here, we identify a novel tumor-mediated mechanism that represses the expression of Tsp-1 in the TME via secretion of the serine protease PRSS2. We demonstrate that PRSS2 represses Tsp-1, not via its enzymatic activity, but by binding to low-density lipoprotein receptor-related protein 1 (LRP1). These findings describe a hitherto undescribed activity for PRSS2 through binding to LRP1 and represent a potential therapeutic strategy to treat cancer by blocking the PRSS2-mediated repression of Tsp-1. Based on the ability of PRSS2 to reprogram the tumor microenvironment, this discovery could lead to the development of therapeutic agents that are indication agnostic.


Assuntos
Neoplasias , Trombospondina 1 , Humanos , Trombospondina 1/genética , Trombospondina 1/metabolismo , Microambiente Tumoral/genética , Neoplasias/genética , Tripsina , Tripsinogênio
3.
J Thorac Oncol ; 17(10): 1178-1191, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35798240

RESUMO

INTRODUCTION: Macrophage phenotype in the tumor microenvironment correlates with prognosis in NSCLC. Immunosuppressive macrophages promote tumor progression, whereas proinflammatory macrophages may drive an antitumor immune response. How individual NSCLCs affect macrophage phenotype is a major knowledge gap. METHODS: To systematically study the impact of lung cancer cells on macrophage phenotypes, we developed an in vitro co-culture model that consisted of molecularly and clinically annotated patient-derived NSCLC lines, human cancer-associated fibroblasts, and murine macrophages. Induced macrophage phenotype was studied through quantitative real-time polymerase chain reaction and validated in vivo using NSCLC xenografts through quantitative immunohistochemistry and clinically with The Cancer Genome Atlas (TCGA)-"matched" patient tumors. RESULTS: A total of 72 NSCLC cell lines were studied. The most frequent highly induced macrophage-related gene was Arginase-1, reflecting an immunosuppressive M2-like phenotype. This was independent of multiple clinicopathologic factors, which also did not affect M2:M1 ratios in matched TCGA samples. In vivo, xenograft tumors established from high Arginase-1-inducing lines (Arghi) had a significantly elevated density of Arg1+ macrophages. Matched TCGA clinical samples to Arghi NSCLC lines had a significantly higher ratio of M2:M1 macrophages (p = 0.0361). CONCLUSIONS: In our in vitro co-culture model, a large panel of patient-derived NSCLC lines most frequently induced high-expression Arginase-1 in co-cultured mouse macrophages, independent of major clinicopathologic and oncogenotype-related factors. Arghi cluster-matched TCGA tumors contained a higher ratio of M2:M1 macrophages. Thus, this in vitro model reproducibly characterizes how individual NSCLC modulates macrophage phenotype, correlates with macrophage polarization in clinical samples, and can serve as an accessible platform for further investigation of macrophage-specific therapeutic strategies.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Arginase/genética , Arginase/metabolismo , Arginase/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Técnicas de Cocultura , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Macrófagos/metabolismo , Camundongos , Fenótipo , Microambiente Tumoral
4.
Cancer Cell ; 40(6): 656-673.e7, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35523176

RESUMO

Recent studies have identified a unique cancer-associated fibroblast (CAF) population termed antigen-presenting CAFs (apCAFs), characterized by the expression of major histocompatibility complex class II molecules, suggesting a function in regulating tumor immunity. Here, by integrating multiple single-cell RNA-sequencing studies and performing robust lineage-tracing assays, we find that apCAFs are derived from mesothelial cells. During pancreatic cancer progression, mesothelial cells form apCAFs by downregulating mesothelial features and gaining fibroblastic features, a process induced by interleukin-1 and transforming growth factor ß. apCAFs directly ligate and induce naive CD4+ T cells into regulatory T cells (Tregs) in an antigen-specific manner. Moreover, treatment with an antibody targeting the mesothelial cell marker mesothelin can effectively inhibit mesothelial cell to apCAF transition and Treg formation induced by apCAFs. Taken together, our study elucidates how mesothelial cells may contribute to immune evasion in pancreatic cancer and provides insight on strategies to enhance cancer immune therapy.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias Pancreáticas , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos , Humanos , Neoplasias Pancreáticas/patologia , Linfócitos T Reguladores , Fator de Crescimento Transformador beta/metabolismo , Neoplasias Pancreáticas
5.
Cancers (Basel) ; 12(9)2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32957515

RESUMO

Cancer-associated fibroblasts (CAFs) are indispensable architects of the tumor microenvironment. They perform the essential functions of extracellular matrix deposition, stromal remodeling, tumor vasculature modulation, modification of tumor metabolism, and participation in crosstalk between cancer and immune cells. In this review, we discuss our current understanding of the principal differences between normal fibroblasts and CAFs, the origin of CAFs, their functions, and ultimately, highlight the intimate connection of CAFs to virtually all of the hallmarks of cancer. We address the remarkable degree of functional diversity and phenotypic plasticity displayed by CAFs and strive to stratify CAF biology among different tumor types into practical functional groups. Finally, we summarize the status of recent and ongoing trials of CAF-directed therapies and contend that the paucity of trials resulting in Food and Drug Administration (FDA) approvals thus far is a consequence of the failure to identify targets exclusive of pro-tumorigenic CAF phenotypes that are mechanistically linked to specific CAF functions. We believe that the development of a unified CAF nomenclature, the standardization of functional assays to assess the loss-of-function of CAF properties, and the establishment of rigorous definitions of CAF subpopulations and their mechanistic functions in cancer progression will be crucial to fully realize the promise of CAF-targeted therapies.

6.
Cancer Prev Res (Phila) ; 13(11): 911-922, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32839204

RESUMO

Cirrhosis is a high-risk state for hepatocellular carcinoma (HCC) development and represents an opportunity to prevent cancer. In the precancerous state of cirrhosis, there is an accumulation of neoantigens that may be specifically targetable through immunotherapy. We asked whether immune checkpoint inhibition could prevent tumorigenesis in a mouse model of diethylnitrosamine and carbon tetrachloride-induced HCC. We found that initiation of anti-PD-1 therapy prior to tumorigenesis could prevent up to 46% of liver tumors. This significant reduction in tumor burden was accompanied by infiltration of CD4+ Th cells and CD8+ cytotoxic T cells into the liver parenchyma. Importantly, anti-PD-1 therapy did not exacerbate liver dysfunction or worsen overall health in this liver disease model. Given the safety and preservation of quality of life observed with long-term immunotherapy use, an immunotherapy chemoprevention strategy is likely associated with a low risk-to-benefit ratio and high value care in select patients. These results encourage a prevention trial in cirrhotic patients with the highest risk of developing HCC.See related Spotlight by Mohammed et al., p. 897.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/prevenção & controle , Humanos , Inibidores de Checkpoint Imunológico , Neoplasias Hepáticas/prevenção & controle , Camundongos , Receptor de Morte Celular Programada 1 , Qualidade de Vida
7.
J Med Chem ; 62(16): 7431-7444, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31310125

RESUMO

A series of 2-amino-2,3-dihydro-1H-indene-5-carboxamides were designed and synthesized as new selective discoidin domain receptor 1 (DDR1) inhibitors. One of the representative compounds, 7f, bound with DDR1 with a Kd value of 5.9 nM and suppressed the kinase activity with an half-maximal (50%) inhibitory concentration value of 14.9 nM. 7f potently inhibited collagen-induced DDR1 signaling and epithelial-mesenchymal transition, dose-dependently suppressed colony formation of pancreatic cancer cells, and exhibited promising in vivo therapeutic efficacy in orthotopic mouse models of pancreatic cancer.


Assuntos
Antineoplásicos/farmacologia , Receptor com Domínio Discoidina 1/antagonistas & inibidores , Neoplasias Experimentais/prevenção & controle , Neoplasias Pancreáticas/prevenção & controle , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Receptor com Domínio Discoidina 1/metabolismo , Desenho de Fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Humanos , Masculino , Camundongos Endogâmicos C57BL , Neoplasias Experimentais/metabolismo , Neoplasias Pancreáticas/metabolismo , Ratos Sprague-Dawley , Ensaio Tumoral de Célula-Tronco
8.
Pharmaceuticals (Basel) ; 12(1)2019 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-30917521

RESUMO

Glioblastoma (GBM) is the most common and deadliest primary adult brain tumor. Invasion, resistance to therapy, and tumor recurrence in GBM can be attributed in part to brain tumor-initiating cells (BTICs). BTICs isolated from various patient-derived xenografts showed high expression of the poorly characterized Apelin early ligand A (APELA) gene. Although originally considered to be a non-coding gene, the APELA gene encodes a protein that binds to the Apelin receptor and promotes the growth of human embryonic stem cells and the formation of the embryonic vasculature. We found that both APELA mRNA and protein are expressed at high levels in a subset of brain tumor patients, and that APELA is also expressed in putative stem cell niche in GBM tumor tissue. Analysis of APELA and the Apelin receptor gene expression in brain tumor datasets showed that high APELA expression was associated with poor patient survival in both glioma and glioblastoma, and APELA expression correlated with glioma grade. In contrast, gene expression of the Apelin receptor or Apelin was not found to be associated with patient survival, or glioma grade. Consequently, APELA may play an important role in glioblastoma tumorigenesis and may be a future therapeutic target.

9.
J Immunol ; 202(1): 292-299, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30510069

RESUMO

Immune profiling of tissue through multiplex immunohistochemistry is important for the investigation of immune cell dynamics, and it can contribute to disease prognosis and evaluation of treatment response in cancer patients. However, protocols for mouse formalin-fixed, paraffin-embedded tissue have been less successful. Given that formalin fixation and paraffin embedding remains the most common preparation method for processing mouse tissue, this has limited the options to study the immune system and the impact of novel therapeutics in preclinical models. In an attempt to address this, we developed an improved immunohistochemistry protocol with a more effective Ag-retrieval buffer. We also validated 22 Abs specific for mouse immune cell markers to distinguish B cells, T cells, NK cells, macrophages, dendritic cells, and neutrophils. In addition, we designed and tested novel strategies to identify immune cells for which unique Abs are currently not available. Last, in the 4T1 model of breast cancer, we demonstrate the utility of our protocol and Ab panels in the quantitation and spatial distribution of immune cells.


Assuntos
Antígenos de Diferenciação/metabolismo , Antígenos/química , Neoplasias da Mama/diagnóstico , Células Dendríticas/imunologia , Imuno-Histoquímica/métodos , Linfócitos/metabolismo , Macrófagos/metabolismo , Animais , Antígenos/metabolismo , Neoplasias da Mama/imunologia , Soluções Tampão , Linhagem Celular Tumoral , Separação Celular , Modelos Animais de Doenças , Feminino , Formaldeído , Humanos , Linfócitos/patologia , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos SCID , Inclusão em Parafina/métodos
10.
Stem Cells ; 36(12): 1804-1815, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30171737

RESUMO

Glioblastoma multiforme (GBM) is a highly aggressive and malignant brain tumor that is refractory to existing therapeutic regimens, which reflects the presence of stem-like cells, termed glioma-initiating cells (GICs). The complex interactions between different signaling pathways and epigenetic regulation of key genes may be critical in the maintaining GICs in their stem-like state. Although several signaling pathways have been identified as being dysregulated in GBM, the prognosis of GBM patients remains miserable despite improvements in targeted therapies. In this report, we identified that BRG1, the catalytic subunit of the SWI/SNF chromatin remodeling complex, plays a fundamental role in maintaining GICs in their stem-like state. In addition, we identified a novel mechanism by which BRG1 regulates glycolysis genes critical for GICs. BRG1 downregulates the expression of TXNIP, a negative regulator of glycolysis. BRG1 knockdown also triggered the STAT3 pathway, which led to TXNIP activation. We further identified that TXNIP is an STAT3-regulated gene. Moreover, BRG1 suppressed the expression of interferon-stimulated genes, which are negatively regulated by STAT3 and regulate tumorigenesis. We further demonstrate that BRG1 plays a critical role in the drug resistance of GICs and in GIC-induced tumorigenesis. By genetic and pharmacological means, we found that inhibiting BRG1 can sensitize GICs to chemotherapeutic drugs, temozolomide and carmustine. Our studies suggest that BRG1 may be a novel therapeutic target in GBM. The identification of the critical role that BRG1 plays in GIC stemness and chemosensitivity will inform the development of better targeted therapies in GBM and possibly other cancers. Stem Cells 2018;36:1806-12.


Assuntos
Cromatina/metabolismo , DNA Helicases/genética , Glioma/metabolismo , Células-Tronco Neoplásicas/metabolismo , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Animais , Glioma/patologia , Humanos , Camundongos , Células-Tronco Neoplásicas/patologia
11.
Oncotarget ; 9(31): 22095-22112, 2018 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-29774125

RESUMO

Glioma-Initiating Cells (GICs) are thought to be responsible for tumor initiation, progression and recurrence in glioblastoma (GBM). In previous studies, we reported the constitutive phosphorylation of the STAT3 transcription factor in GICs derived from GBM patient-derived xenografts, and that STAT3 played a critical role in GBM tumorigenesis. In this study, we show that CRISPR/Cas9-mediated deletion of STAT3 in an established GBM cell line markedly inhibited tumorigenesis by intracranial injection but had little effect on cell proliferation in vitro. Tumorigenesis was rescued by the enforced expression of wild-type STAT3 in cells lacking STAT3. In contrast, GICs were highly addicted to STAT3 and upon STAT3 deletion GICs were non-viable. Moreover, we found that STAT3 was constitutively activated in GICs by phosphorylation on both tyrosine (Y705) and serine (S727) residues. Therefore, to study STAT3 function in GICs we established an inducible system to knockdown STAT3 expression (iSTAT3-KD). Using this approach, we demonstrated that Y705-STAT3 phosphorylation was critical and indispensable for GIC-induced tumor formation. Both phosphorylation sites in STAT3 promoted GIC proliferation in vitro. We further showed that S727-STAT3 phosphorylation was Y705-dependent. Targeted microarray and RNA sequencing revealed that STAT3 activated cell-cycle regulator genes, and downregulated genes involved in the interferon response, the hypoxia response, the TGFß pathway, and remodeling of the extracellular matrix. Since STAT3 is an important oncogenic driver of GBM, the identification of these STAT3 regulated pathways in GICs will inform the development of better targeted therapies against STAT3 in GBM and other cancers.

13.
PLoS One ; 10(5): e0125838, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25955030

RESUMO

Malignant glioblastoma (GBM) is a highly aggressive brain tumor with a dismal prognosis and limited therapeutic options. Genomic profiling of GBM samples has identified four molecular subtypes (Proneural, Neural, Classical and Mesenchymal), which may arise from different glioblastoma stem-like cell (GSC) populations. We previously showed that adherent cultures of GSCs grown on laminin-coated plates (Ad-GSCs) and spheroid cultures of GSCs (Sp-GSCs) had high expression of stem cell markers (CD133, Sox2 and Nestin), but low expression of differentiation markers (ßIII-tubulin and glial fibrillary acid protein). In the present study, we characterized GBM tumors produced by subcutaneous and intracranial injection of Ad-GSCs and Sp-GSCs isolated from a patient-derived xenoline. Although they formed tumors with identical histological features, gene expression analysis revealed that xenografts of Sp-GSCs had a Classical molecular subtype similar to that of bulk tumor cells. In contrast xenografts of Ad-GSCs expressed a Mesenchymal gene signature. Adherent GSC-derived xenografts had high STAT3 and ANGPTL4 expression, and enrichment for stem cell markers, transcriptional networks and pro-angiogenic markers characteristic of the Mesenchymal subtype. Examination of clinical samples from GBM patients showed that STAT3 expression was directly correlated with ANGPTL4 expression, and that increased expression of these genes correlated with poor patient survival and performance. A pharmacological STAT3 inhibitor abrogated STAT3 binding to the ANGPTL4 promoter and exhibited anticancer activity in vivo. Therefore, Ad-GSCs and Sp-GSCs produced histologically identical tumors with different gene expression patterns, and a STAT3/ANGPTL4 pathway is identified in glioblastoma that may serve as a target for therapeutic intervention.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Heterogeneidade Genética , Glioblastoma/genética , Glioblastoma/patologia , Células-Tronco Neoplásicas/patologia , Proteína 4 Semelhante a Angiopoietina , Angiopoietinas/metabolismo , Animais , Neoplasias Encefálicas/irrigação sanguínea , Adesão Celular/efeitos dos fármacos , Separação Celular , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/irrigação sanguínea , Humanos , Masculino , Mesoderma/efeitos dos fármacos , Mesoderma/patologia , Camundongos SCID , Gradação de Tumores , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Regiões Promotoras Genéticas/genética , Ligação Proteica/efeitos dos fármacos , Piridinas/farmacologia , Fator de Transcrição STAT3/metabolismo , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia , Tela Subcutânea/patologia , Análise de Sobrevida , Tirfostinas/farmacologia , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...