Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Gen Virol ; 105(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38767624

RESUMO

Naturally occurring isolates of baculoviruses, such as the Bombyx mori nucleopolyhedrovirus (BmNPV), usually consist of numerous genetically different haplotypes. Deciphering the different haplotypes of such isolates is hampered by the large size of the dsDNA genome, as well as the short read length of next generation sequencing (NGS) techniques that are widely applied for baculovirus isolate characterization. In this study, we addressed this challenge by combining the accuracy of NGS to determine single nucleotide variants (SNVs) as genetic markers with the long read length of Nanopore sequencing technique. This hybrid approach allowed the comprehensive analysis of genetically homogeneous and heterogeneous isolates of BmNPV. Specifically, this allowed the identification of two putative major haplotypes in the heterogeneous isolate BmNPV-Ja by SNV position linkage. SNV positions, which were determined based on NGS data, were linked by the long Nanopore reads in a Position Weight Matrix. Using a modified Expectation-Maximization algorithm, the Nanopore reads were assigned according to the occurrence of variable SNV positions by machine learning. The cohorts of reads were de novo assembled, which led to the identification of BmNPV haplotypes. The method demonstrated the strength of the combined approach of short- and long-read sequencing techniques to decipher the genetic diversity of baculovirus isolates.


Assuntos
Bombyx , Haplótipos , Sequenciamento de Nucleotídeos em Larga Escala , Sequenciamento por Nanoporos , Nucleopoliedrovírus , Polimorfismo de Nucleotídeo Único , Nucleopoliedrovírus/genética , Nucleopoliedrovírus/classificação , Nucleopoliedrovírus/isolamento & purificação , Animais , Sequenciamento por Nanoporos/métodos , Bombyx/virologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Genoma Viral
2.
Viruses ; 13(5)2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-34068017

RESUMO

The mulberry silkworm, Bombyx mori (L.), is a model organism of lepidopteran insects with high economic importance. The viral diseases of the silkworm caused by Bombyx mori nucleopolyhedrovirus (BmNPV) and Bombyx mori bidensovirus (BmBDV) inflict huge economic losses and significantly impact the sericulture industry of India and other countries. To understand the distribution of Indian isolates of the BmNPV and to investigate their genetic composition, an in-depth population structure analysis was conducted using comprehensive and newly developed genomic analysis methods. The seven new Indian BmNPV isolates from Anantapur, Dehradun, Ghumarwin, Jammu, Kashmir, Mysore and Salem grouped in the BmNPV clade, and are most closely related to Autographa californica multiple nucleopolyhedrovirus and Rachiplusia ou multiple nucleopolyhedrovirus on the basis of gene sequencing and phylogenetic analyses of the partial polh, lef-8 and lef-9 gene fragments. The whole genome sequencing of three Indian BmNPV isolates from Mysore (-My), Jammu (-Ja) and Dehradun (-De) was conducted, and intra-isolate genetic variability was analyzed on the basis of variable SNP positions and the frequencies of alternative nucleotides. The results revealed that the BmNPV-De and BmNPV-Ja isolates are highly similar in their genotypic composition, whereas the population structure of BmNPV-My appeared rather pure and homogenous, with almost no or few genetic variations. The BmNPV-De and BmNPV-Ja samples further contained a significant amount of BmBDV belonging to the Bidnaviridae family. We elucidated the genotype composition within Indian BmNPV and BmBDV isolates, and the results presented have broad implications for our understanding of the genetic diversity and evolution of BmNPV and co-occurring BmBDV isolates.


Assuntos
Bombyx/virologia , Genótipo , Vírus de Insetos/genética , Nucleopoliedrovírus/genética , Animais , DNA Viral , Genes Virais , Genoma Viral , Índia , Vírus de Insetos/classificação , Vírus de Insetos/isolamento & purificação , Nucleopoliedrovírus/classificação , Nucleopoliedrovírus/isolamento & purificação , Fases de Leitura Aberta , Filogenia , Filogeografia , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Sequenciamento Completo do Genoma
3.
Chem Biol Drug Des ; 98(3): 363-376, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33966346

RESUMO

Histone deacetylase 2 (HDAC2), an isozyme of Class I HDACs has potent imputations in actuating neurodegenerative signaling. Currently, there are sizeable therapeutic disquiets with the use of synthetic histone deacetylase inhibitors in disease management. This strongly suggests the unfulfilled medical necessity of plant substitutes for therapeutic intervention. Sulforaphane-N-acetyl-cysteine (SFN-N-acetylcysteine or SFN-NAC), a sulforaphane metabolite has shown significantly worthier activity against HDACs under in vitro conditions. However, the atomistic studies of SFN-NAC against HDAC2 are currently lacking. Thus, the present study employed a hybrid strategy including extra-precision (XP) grid-based flexible molecular docking, molecular mechanics generalized born surface area (MM-GBSA), e-Pharmacophores method, and molecular dynamics simulation for exploring the binding strengh, mode of interaction, e-Pharmacophoric features, and stability of SFN-NAC towards HDAC2. Further, the globally acknowledged density functional theory (DFT) study was performed on SFN-NAC and entinostat individually in complex state with HDAC2. Apart from this, these inhibitors were tested against three distinct cancer cell models and one transformed cell line for cytotoxic activity. Moreover, double mutant of HDAC2 was generated and the binding orientation and interaction of SFN-NAC was scrutinized in this state. On the whole, this study unbosomed and explained the comparatively higher binding affinity of entinostat for HDAC2 and its wide spectrum cytotoxicity than SFN-NAC.


Assuntos
Acetilcisteína/química , Antineoplásicos/química , Histona Desacetilase 2/antagonistas & inibidores , Isotiocianatos/química , Sulfóxidos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Benzamidas/farmacologia , Sítios de Ligação , Domínio Catalítico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Teoria da Densidade Funcional , Estabilidade de Medicamentos , Histona Desacetilase 2/genética , Histona Desacetilase 2/metabolismo , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Humanos , Ligação de Hidrogênio , Simulação de Acoplamento Molecular , Mutagênese , Piridinas/farmacologia , Termodinâmica
4.
J Insect Sci ; 14: 96, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25368052

RESUMO

Infectivity of polyhedra of Spodoptera litura multiple nucleopolyhedrovirus before and after passage through the gut of the predatory stink bug, Eocanthecona furcellata Wolff (Hemiptera: Pentatomidae) was compared through field bioassay studies. Three sets of E. furcellata were used for bioassays and these were allowed to feed on a single meal of five third instar Oriental leaf worm, Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae), that were infected with polyhedra before passage, after passage, and healthy (control) larvae 1 day prior to the trial. The predators were subsequently released on cabbage plants that were infested with 100 healthy S. litura larvae. The median lethal dose (LD50) and survival time (ST50) values before and after passage through the gut were not significantly different. Additional mortality due to virus infection increased 13- 17% before and after treatments but within these treatments the mortality did not vary significantly. It was concluded that E. furcellata disseminated the virus through their feces into the ecosystem and infectivity of the SpltMNPV was not altered after passage through the gut of the predator.


Assuntos
Cadeia Alimentar , Heterópteros , Interações Hospedeiro-Patógeno , Nucleopoliedrovírus/patogenicidade , Spodoptera/virologia , Animais , Feminino
5.
Indian J Exp Biol ; 52(4): 369-74, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24772940

RESUMO

An originally isolated baculovirus, Spodoptera litura multiple nucleopolyhedrovirus (SpltMNPV) was serially passed through the S. litura larvae for upto four generations to determine the mean number of occlusion bodies (OBs) harvested per larva and their efficacy in terms of infectivity, feeding cessation and speed of kill of host larvae. The results revealed that the mean number of OBs harvested per larva increased significantly with increase in the dose of SpltMNPV at each passage and the yield was significantly lower in original stock wild-type SpltMNPV (P0) as compared to serially passed SpltMNPV (P1, P2, P3 and P4). Laboratory bioassays indicate that median lethal doses (LD50), median times to feeding cessation (FT50) and median survival times (ST50) of P0, P1, P2, P3 and P4 were significantly different from each other. The OBs of each passage when tested for their cross-infectivity against Spodoptera exigua and Spilarctia obliqua revealed significant reduction in their mortality. These results indicate that serially passed SpltMNPV is more host specific and more effective biocontrol agent than the original stock wild-type virus and can be adopted for mass production as a viral pesticide for control of the S. litura.


Assuntos
Nucleopoliedrovírus/crescimento & desenvolvimento , Spodoptera/virologia , Animais , Interações Hospedeiro-Patógeno/fisiologia , Inseticidas/metabolismo , Larva/virologia , Nucleopoliedrovírus/metabolismo , Inoculações Seriadas , Especificidade da Espécie , Proteínas Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA