Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 617(7962): 743-746, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37138080

RESUMO

Seismological models from Apollo missions provided the first records of the Moon inner structure with a decrease in seismic wave velocities at the core-mantle boundary1-3. The resolution of these records prevents a strict detection of a putative lunar solid inner core and the impact of the lunar mantle overturn in the lowest part of the Moon is still discussed4-7. Here we combine geophysical and geodesic constraints from Monte Carlo exploration and thermodynamical simulations for different Moon internal structures to show that only models with a low viscosity zone enriched in ilmenite and an inner core present densities deduced from thermodynamic constraints compatible with densities deduced from tidal deformations. We thus obtain strong indications in favour of the lunar mantle overturn scenario and, in this context, demonstrate the existence of the lunar inner core with a radius of 258 ± 40 km and density 7,822 ± 1,615 kg m-3. Our results question the evolution of the Moon magnetic field thanks to its demonstration of the existence of the inner core and support a global mantle overturn scenario that brings substantial insights on the timeline of the lunar bombardment in the first billion years of the Solar System8.

2.
Sci Adv ; 6(27)2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32937456

RESUMO

Comparative planetology studies are key for understanding the main processes driving planetary formation and evolution. None have been yet applied to pristine asteroids formed in the solar protoplanetary disk, mainly because of their comminution during their 4.5-billion-year collisional lifetime. From remarkable textural, mineralogical, chemical, and thermodynamic similarities, we show that the high-temperature Kudryavy volcano fumarolic environment from Kurile Islands is a likely proxy of the Fe-alkali-halogen metasomatism on the CV and CO carbonaceous chondrite parent bodies. Ca-Fe-rich and Na-Al-Cl-rich secondary silicates in CV and CO chondrites are, thus, inferred to be fumarolic-like incrustations that precipitate from hot and reduced hydrothermal vapors after interactions with the wallrocks during buoyancy-driven Darcy flow percolation. These vapors may originate from the progressive heating and devolatilization of a chondritic protolith on their parent body or are remnant of the cooling of residual local nebular gases at the time of their primary planetesimal accretion.

3.
Sci Adv ; 5(8): eaav3971, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31489363

RESUMO

Several arguments point to a larger proportion of metal-rich asteroids than that derived from spectral observations, as remnants of collisional disruptions of differentiated bodies. We show experimentally that this apparent deficit may result from the coating of metallic surfaces by silicate melts produced during impacts of hydrated or dry projectiles at typical asteroid impact speeds. Spectral analysis of steel and iron meteorite targets after impact shows a profoundly modified optical signature. Furthermore, hydrated projectiles leave a 3-µm absorption hydration feature. This feature is thus consistent with a metallic surface and does not require an unusual low-speed impact. Unless systematizing radar measurements, ground-based spectral observations can be deceptive in identifying iron-rich bodies. The NASA Psyche mission rendezvous with Psyche will offer the unique opportunity both to measure the relative abundances of regolith and glassy coated surfaces and to substantially increase our understanding of impact processes and signatures on a metal-rich asteroid.

4.
Nat Commun ; 8(1): 261, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28811478

RESUMO

Early Solar System planetesimal thermal models predict the heating of the chondritic protolith and the preservation of a chondritic crust on differentiated parent bodies. Petrological and geochemical analyses of chondrites have suggested that secondary alteration phases formed at low temperatures (<300 °C) by fluid-rock interaction where reduced and oxidized Vigarano type Carbonaceous (CV) chondrites witness different physicochemical conditions. From a thermodynamical survey of Ca-Fe-rich secondary phases in CV3 chondrites including silica activity (aSiO2), here we show that the classical distinction between reduced and oxidized chondrites is no longer valid and that their Ca-Fe-rich secondary phases formed in similar reduced conditions near the iron-magnetite redox buffer at low aSiO2 (log(aSiO2) <-1) and moderate temperature (210-610 °C). The various lithologies in CV3 chondrites are inferred to be fragments of an asteroid percolated heterogeneously via porous flow of hydrothermal fluid. Putative 'onion shell' structures are not anymore a requirement for the CV parent body crust.Meteorites may unlock the history of the early solar system. Here, the authors find, through Ca-Fe-rich secondary phases, that the distinction between reduced and oxidized CV chondrites is invalid; therefore, CV3 chondrites are asteroid fragments that percolated heterogeneously via porous flow of hydrothermal fluid.

5.
Nature ; 508(7495): 233-6, 2014 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-24695219

RESUMO

Space missions and thermal infrared observations have shown that small asteroids (kilometre-sized or smaller) are covered by a layer of centimetre-sized or smaller particles, which constitute the regolith. Regolith generation has traditionally been attributed to the fall back of impact ejecta and by the break-up of boulders by micrometeoroid impact. Laboratory experiments and impact models, however, show that crater ejecta velocities are typically greater than several tens of centimetres per second, which corresponds to the gravitational escape velocity of kilometre-sized asteroids. Therefore, impact debris cannot be the main source of regolith on small asteroids. Here we report that thermal fatigue, a mechanism of rock weathering and fragmentation with no subsequent ejection, is the dominant process governing regolith generation on small asteroids. We find that thermal fragmentation induced by the diurnal temperature variations breaks up rocks larger than a few centimetres more quickly than do micrometeoroid impacts. Because thermal fragmentation is independent of asteroid size, this process can also contribute to regolith production on larger asteroids. Production of fresh regolith originating in thermal fatigue fragmentation may be an important process for the rejuvenation of the surfaces of near-Earth asteroids, and may explain the observed lack of low-perihelion, carbonaceous, near-Earth asteroids.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA