Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 7(1): 9860, 2017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28852211

RESUMO

In vitiligo, chronic loss of melanocytes and consequent absence of melanin from the epidermis presents a challenge for long-term tissue maintenance. The stable vitiligo patches are known to attain an irreversible depigmented state. However, the molecular and cellular processes resulting in this remodeled tissue homeostasis is unclear. To investigate the complex interplay of inductive signals and cell intrinsic factors that support the new acquired state, we compared the matched lesional and non-lesional epidermis obtained from stable non-segmental vitiligo subjects. Hierarchical clustering of genome-wide expression of transcripts surprisingly segregated lesional and non-lesional samples in two distinct clades, despite the apparent heterogeneity in the lesions of different vitiligo subjects. Pathway enrichment showed the expected downregulation of melanogenic pathway and a significant downregulation of cornification and keratinocyte differentiation processes. These perturbations could indeed be recapitulated in the lesional epidermal tissue, including blunting of rete-ridges, thickening of stratum corneum and increase in the size of corneocytes. In addition, we identify marked increase in the putrescine levels due to the elevated expression of spermine/spermidine acetyl transferase. Our study provides insights into the intrinsic self-renewing ability of damaged lesional tissue to restore epidermal functionality in vitiligo.


Assuntos
Suscetibilidade a Doenças , Epiderme/metabolismo , Epiderme/patologia , Transcriptoma , Vitiligo/etiologia , Vitiligo/patologia , Adulto , Biomarcadores , Biologia Computacional/métodos , Epiderme/ultraestrutura , Feminino , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Vitiligo/metabolismo , Adulto Jovem
2.
Sci Rep ; 6: 18761, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26758568

RESUMO

Healthy human skin harbours a diverse array of microbes that comprise the skin microbiome. Commensal bacteria constitute an important component of resident microbiome and are intricately linked to skin health. Recent studies describe an association between altered skin microbial community and epidemiology of diseases, like psoriasis, atopic dermatitis etc. In this study, we compare the differences in bacterial community of lesional and non-lesional skin of vitiligo subjects. Our study reveals dysbiosis in the diversity of microbial community structure in lesional skin of vitiligo subjects. Although individual specific signature is dominant over the vitiligo-specific microbiota, a clear decrease in taxonomic richness and evenness can be noted in lesional patches. Investigation of community specific correlation networks reveals distinctive pattern of interactions between resident bacterial populations of the two sites (lesional and non-lesional). While Actinobacterial species constitute the central regulatory nodes (w.r.t. degree of interaction) in non-lesional skin, species belonging to Firmicutes dominate on lesional sites. We propose that the changes in taxonomic characteristics of vitiligo lesions, as revealed by our study, could play a crucial role in altering the maintenance and severity of disease. Future studies would elucidate mechanistic relevance of these microbial dynamics that can provide new avenues for therapeutic interventions.


Assuntos
Disbiose , Microbiota , Pele/microbiologia , Vitiligo/etiologia , Adulto , Biodiversidade , Feminino , Humanos , Masculino , Metagenoma , Metagenômica/métodos , Pessoa de Meia-Idade , RNA Ribossômico 16S/genética , Pele/patologia , Adulto Jovem
3.
Nat Chem Biol ; 10(7): 542-51, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24937072

RESUMO

The recurrent interaction of skin with sunlight is an intrinsic constituent of human life, and exhibits both beneficial and detrimental effects. The apparent robust architectural framework of skin conceals remarkable mechanisms that operate at the interface between the surface and environment. In this Review, we discuss three distinct protective mechanisms and response pathways that safeguard skin from deleterious effects of ultraviolet (UV) radiation. The unique stratified epithelial architecture of human skin along with the antioxidant-response pathways constitutes the important defense mechanisms against UV radiation. The intricate pigmentary system and its intersection with the immune-system cytokine axis delicately balance tissue homeostasis. We discuss the relationship among these networks in the context of an unusual depigmenting disorder, vitiligo. The elaborate tunable mechanisms, elegant multilayered architecture and evolutionary selection pressures involved in skin and sunlight interaction makes this a compelling model to understand biological complexity.


Assuntos
Queratinócitos/metabolismo , Melaninas/metabolismo , Melanócitos/metabolismo , Melanossomas/metabolismo , Pele/metabolismo , Antioxidantes/metabolismo , Ceramidas/metabolismo , Expressão Gênica , Homeostase , Humanos , Queratinócitos/citologia , Queratinócitos/efeitos da radiação , Melaninas/genética , Melanócitos/citologia , Melanócitos/efeitos da radiação , Melanossomas/efeitos da radiação , Fosfolipídeos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Pele/citologia , Pele/efeitos da radiação , Luz Solar , Raios Ultravioleta , Vitiligo/genética , Vitiligo/metabolismo , Vitiligo/patologia
4.
Proc Natl Acad Sci U S A ; 111(6): 2301-6, 2014 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-24474804

RESUMO

Cellular homeostasis is an outcome of complex interacting processes with nonlinear feedbacks that can span distinct spatial and temporal dimensions. Skin tanning is one such dynamic response that maintains genome integrity of epidermal cells. Although pathways underlying hyperpigmentation cascade are recognized, negative feedback regulatory loops that can dampen the activated melanogenesis process are not completely understood. In this study, we delineate a regulatory role of IFN-γ in skin pigmentation biology. We show that IFN-γ signaling impedes maturation of the key organelle melanosome by concerted regulation of several pigmentation genes. Withdrawal of IFN-γ signal spontaneously restores normal cellular programming. This effect in melanocytes is mediated by IFN regulatory factor-1 and is not dependent on the central regulator microphthalmia-associated transcription factor. Chronic IFN-γ signaling shows a clear hypopigmentation phenotype in both mouse and human skin. Interestingly, IFN-γ KO mice display a delayed recovery response to restore basal state of epidermal pigmentation after UV-induced tanning. Together, our studies delineate a new spatiotemporal role of the IFN-γ signaling network in skin pigmentation homeostasis, which could have implications in various cutaneous depigmentary and malignant disorders.


Assuntos
Interferon gama/metabolismo , Melanócitos/citologia , Melanossomas/metabolismo , Transdução de Sinais , Pigmentação da Pele , Animais , Linhagem Celular Tumoral , Melanossomas/ultraestrutura , Camundongos , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Transcrição Gênica
5.
J Immunol Methods ; 339(2): 205-19, 2008 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-18926828

RESUMO

The aim of this study was to develop a highly specific and sensitive (RT-)PCR capable of potentially amplifying the rearranged/expressed VH and VL gene belonging to any mouse immunoglobulin V gene family from a single or a small number of B cells. A database of germline immunoglobulin sequences was used to design 112 primers for a nested (RT-)PCR based strategy to cover all VH, VL, JH, JL, CH and CL gene families/genes from C57BL/6 and BALB/c mice. 93.7% of the primers had 4-fold or less, while 71.4% had no degeneracy. The proportions of germline V genes to which the primers bind with no, up to 1 and up to 2 mismatches are 59.7%, 84.1% and 94.9%, respectively. Most but not all V gene family specific primers designed allow amplification of full-length V genes. The nested primers permit PCR amplification of rearranged V genes belonging to all VH and VL gene families from splenocyte genomic DNA. The V gene family-specific nature of the primers was experimentally confirmed for randomly selected 6 VH and 6 Vkappa families, and all Vlambda genes. The broad V gene family coverage of our primer set was experimentally validated by amplifying the rearranged/expressed VH and VL genes from splenocytes and a panel of 38 hybridomas under conditions where primer mixes and genomic DNA or total RNA was used as starting template. We observed no or low-level cross-family priming. Pooled constant region specific primers allowed efficient RT-PCR amplification of H and L chain isotypes. The expressed VH and VL genes belonging to different V gene families RT-PCR amplified from a mixture of hybridomas in a representative manner. We successfully amplified the expressed VH and Vkappa gene from a single hybridoma cell by RT-PCR and from 10-15 microdissected B cells by genomic PCR. This, first of its kind, comprehensive set of highly sensitive and specific nested primers that provide broad V gene family coverage will open up new avenues and opportunities to study various aspects of mouse B cell biology.


Assuntos
Primers do DNA/genética , Rearranjo Gênico do Linfócito B/genética , Região Variável de Imunoglobulina/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Animais , Linfócitos B/imunologia , DNA/genética , Rearranjo Gênico do Linfócito B/imunologia , Hibridomas/imunologia , Região Variável de Imunoglobulina/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos CBA , RNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...