Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Life Sci Alliance ; 7(2)2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37993259

RESUMO

Platelets display unexpected roles in immune and coagulation responses. Emerging evidence suggests that STING is implicated in hypercoagulation. STING is an adaptor protein downstream of the DNA sensor cyclic GMP-AMP synthase (cGAS) that is activated by cytosolic microbial and self-DNA during infections, and in the context of loss of cellular integrity, to instigate the production of type-I IFN and pro-inflammatory cytokines. To date, whether the cGAS-STING pathway is present in platelets and contributes to platelet functions is not defined. Using a combination of pharmacological and genetic approaches, we demonstrate here that megakaryocytes and platelets possess a functional cGAS-STING pathway. Our results suggest that in megakaryocytes, STING stimulation activates a type-I IFN response, and during thrombopoiesis, cGAS and STING are transferred to proplatelets. Finally, we show that both murine and human platelets contain cGAS and STING proteins, and the cGAS-STING pathway contributes to potentiation of platelet activation and aggregation. Taken together, these observations establish for the first time a novel role of the cGAS-STING DNA sensing axis in the megakaryocyte and platelet lineage.


Assuntos
Interferon Tipo I , Megacariócitos , Animais , Humanos , Camundongos , Megacariócitos/metabolismo , Transdução de Sinais , DNA/metabolismo , Citocinas , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Interferon Tipo I/metabolismo
2.
PLoS Biol ; 21(10): e3002341, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37883333

RESUMO

There is a growing appreciation that the direct interaction between bacteriophages and the mammalian host can facilitate diverse and unexplored symbioses. Yet the impact these bacteriophages may have on mammalian cellular and immunological processes is poorly understood. Here, we applied highly purified phage T4, free from bacterial by-products and endotoxins to mammalian cells and analyzed the cellular responses using luciferase reporter and antibody microarray assays. Phage preparations were applied in vitro to either A549 lung epithelial cells, MDCK-I kidney cells, or primary mouse bone marrow derived macrophages with the phage-free supernatant serving as a comparative control. Highly purified T4 phages were rapidly internalized by mammalian cells and accumulated within macropinosomes but did not activate the inflammatory DNA response TLR9 or cGAS-STING pathways. Following 8 hours of incubation with T4 phage, whole cell lysates were analyzed via antibody microarray that detected expression and phosphorylation levels of human signaling proteins. T4 phage application led to the activation of AKT-dependent pathways, resulting in an increase in cell metabolism, survival, and actin reorganization, the last being critical for macropinocytosis and potentially regulating a positive feedback loop to drive further phage internalization. T4 phages additionally down-regulated CDK1 and its downstream effectors, leading to an inhibition of cell cycle progression and an increase in cellular growth through a prolonged G1 phase. These interactions demonstrate that highly purified T4 phages do not activate DNA-mediated inflammatory pathways but do trigger protein phosphorylation cascades that promote cellular growth and survival. We conclude that mammalian cells are internalizing bacteriophages as a resource to promote cellular growth and metabolism.


Assuntos
Anticorpos , Bacteriófago T4 , Animais , Camundongos , Humanos , Bacteriófago T4/genética , Ciclo Celular , DNA , Mamíferos/genética
3.
Nat Commun ; 14(1): 5666, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37723181

RESUMO

TANK-binding kinase 1 (TBK1) is a key signalling component in the production of type-I interferons, which have essential antiviral activities, including against SARS-CoV-2. TBK1, and its homologue IκB kinase-ε (IKKε), can also induce pro-inflammatory responses that contribute to pathogen clearance. While initially protective, sustained engagement of type-I interferons is associated with damaging hyper-inflammation found in severe COVID-19 patients. The contribution of TBK1/IKKε signalling to these responses is unknown. Here we find that the small molecule idronoxil inhibits TBK1/IKKε signalling through destabilisation of TBK1/IKKε protein complexes. Treatment with idronoxil, or the small molecule inhibitor MRT67307, suppresses TBK1/IKKε signalling and attenuates cellular and molecular lung inflammation in SARS-CoV-2-challenged mice. Our findings additionally demonstrate that engagement of STING is not the major driver of these inflammatory responses and establish a critical role for TBK1/IKKε signalling in SARS-CoV-2 hyper-inflammation.


Assuntos
COVID-19 , Interferon Tipo I , Animais , Camundongos , Quinase I-kappa B , Modelos Animais de Doenças , SARS-CoV-2 , Inflamação
4.
Methods Mol Biol ; 2691: 225-234, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37355549

RESUMO

A growing body of preclinical evidence has led to the hypothesis that human Toll-like receptor 8 (hTLR8) activation in the tumor microenvironment (TME) could have potent anticancer effects through its action on monocytes, myeloid dendritic cells (mDCs), and natural killer (NK) cells. This has motivated the initiation of several clinical trials for chemical hTLR8 agonists in a variety of cancers. Concurrently, a growing number of synthetic antisense oligonucleotides (ASOs) are being developed as cancer therapeutics. We have recently reported that 2'-O-methyl (2'OMe)-modified ASOs can potentiate sensing of hTLR8 chemical agonists in a sequence-dependent manner. This suggests that select gene-targeting ASOs with anticancer activity may synergize with low-dose hTLR8 agonists in the TME. Here, we provide a detailed protocol to rapidly screen and identify such synthetic bifunctional oligonucleotides with synergistic activity on hTLR8 sensing.


Assuntos
Oligonucleotídeos Antissenso , Receptor 8 Toll-Like , Humanos , Oligonucleotídeos Antissenso/genética , Receptor 8 Toll-Like/genética , Receptor 8 Toll-Like/agonistas , Oligonucleotídeos/genética , Sequência de Bases , Adjuvantes Imunológicos , Marcação de Genes
5.
mBio ; 13(4): e0206422, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35924852

RESUMO

Cytoplasmic detection of DNA by cyclic GMP-AMP (cGAMP) synthase (cGAS) is an essential component of antiviral responses. Upon synthesis, cGAMP binds to the stimulator of interferon (IFN) genes (STING) in infected and adjacent cells through intercellular transfer by connexins forming gap-junctions, eliciting a strong IFN-ß-driven antiviral response. We demonstrate here that Genistein, a flavonoid compound naturally occurring in soy-based foods, inhibits cGAS-STING antiviral signaling at two levels. First, Genistein pretreatment of cGAMP-producing cells inhibited gap-junction intercellular communication, resulting in reduced STING responses in adjacent cells. In addition, Genistein directly blocked STING activation by the murine agonist DMXAA, by decreasing the interaction of STING with TBK1 and IKKε. As a result, Genistein attenuated STING signaling in human and mouse cells, dampening antiviral activity against Semliki Forest Virus infection. Collectively, our findings identify a previously unrecognized proviral activity of Genistein mediated via its inhibitory effects at two levels of cGAS-STING signaling. IMPORTANCE Several reports suggest that Genistein exhibits antiviral activities against DNA viruses. Our work uncovers a previously unrecognized proviral effect of Genistein, through inhibition of the cGAS-STING pathway at the level of cGAMP transfer and its sensing by STING. This suggests that the use of Genistein as an antiviral should be taken with caution as it may reduce the protective antiviral effects elicited by host STING activation.


Assuntos
Genisteína , Proteínas de Membrana , Animais , Antivirais/farmacologia , Genisteína/farmacologia , Humanos , Imunidade Inata/genética , Interferon beta/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Nucleotidiltransferases/genética
6.
Nat Commun ; 13(1): 2321, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35484149

RESUMO

Coatomer complex I (COPI) mediates retrograde vesicular trafficking from Golgi to the endoplasmic reticulum (ER) and within Golgi compartments. Deficiency in subunit alpha causes COPA syndrome and is associated with type I IFN signalling, although the upstream innate immune sensor involved was unknown. Using in vitro models we find aberrant activation of the STING pathway due to deficient retrograde but probably not intra-Golgi transport. Further we find the upstream cytosolic DNA sensor cGAS as essentially required to drive type I IFN signalling. Genetic deletion of COPI subunits COPG1 or COPD similarly induces type I IFN activation in vitro, which suggests that inflammatory diseases associated with mutations in other COPI subunit genes may exist. Finally, we demonstrate that inflammation in COPA syndrome patient peripheral blood mononuclear cells and COPI-deficient cell lines is ameliorated by treatment with the small molecule STING inhibitor H-151, suggesting targeted inhibition of the cGAS/STING pathway as a promising therapeutic approach.


Assuntos
Leucócitos Mononucleares , Nucleotidiltransferases , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Complexo I de Proteína do Envoltório/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Humanos , Leucócitos Mononucleares/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Transdução de Sinais
7.
Nature ; 605(7909): 349-356, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35477763

RESUMO

Although circumstantial evidence supports enhanced Toll-like receptor 7 (TLR7) signalling as a mechanism of human systemic autoimmune disease1-7, evidence of lupus-causing TLR7 gene variants is lacking. Here we describe human systemic lupus erythematosus caused by a TLR7 gain-of-function variant. TLR7 is a sensor of viral RNA8,9 and binds to guanosine10-12. We identified a de novo, previously undescribed missense TLR7Y264H variant in a child with severe lupus and additional variants in other patients with lupus. The TLR7Y264H variant selectively increased sensing of guanosine and 2',3'-cGMP10-12, and was sufficient to cause lupus when introduced into mice. We show that enhanced TLR7 signalling drives aberrant survival of B cell receptor (BCR)-activated B cells, and in a cell-intrinsic manner, accumulation of CD11c+ age-associated B cells and germinal centre B cells. Follicular and extrafollicular helper T cells were also increased but these phenotypes were cell-extrinsic. Deficiency of MyD88 (an adaptor protein downstream of TLR7) rescued autoimmunity, aberrant B cell survival, and all cellular and serological phenotypes. Despite prominent spontaneous germinal-centre formation in Tlr7Y264H mice, autoimmunity was not ameliorated by germinal-centre deficiency, suggesting an extrafollicular origin of pathogenic B cells. We establish the importance of TLR7 and guanosine-containing self-ligands for human lupus pathogenesis, which paves the way for therapeutic TLR7 or MyD88 inhibition.


Assuntos
Mutação com Ganho de Função , Lúpus Eritematoso Sistêmico , Receptor 7 Toll-Like , Animais , Autoimunidade/genética , Linfócitos B , GMP Cíclico/análogos & derivados , Guanosina , Humanos , Lúpus Eritematoso Sistêmico/genética , Camundongos , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/metabolismo
8.
EMBO Rep ; 23(1): e54231, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34796613

RESUMO

Cyclic GMP-AMP (cGAMP) synthase (cGAS) is an essential innate immune sensor. Remarkably, in addition to its role in the early detection of pathogenic DNA molecules, cGAS also monitors cellular health through the sensing of nuclear and mitochondrial DNA aberrantly localised to the cell cytoplasm. This central position of cGAS requires tight molecular controls which are only starting to be understood. In this issue of EMBO Reports, Zhao and colleagues (Zhao et al, 2021) describe a novel mechanism switching on DNA sensing, relying on the formation of primary condensates of cGAS and GTPase-activating protein-(SH3 domain)-binding protein 1 (G3BP1).


Assuntos
DNA Helicases , RNA Helicases , Nucleotídeos Cíclicos , Proteínas de Ligação a Poli-ADP-Ribose , Proteínas com Motivo de Reconhecimento de RNA
9.
J Mol Biol ; 434(2): 167361, 2022 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-34808225

RESUMO

MicroRNA-101-3p (miR-101-3p) is a tumour suppressor that regulates cancer proliferation and apoptotic signalling. Loss of miR-101-3p increases the expression of the Polycomb Repressive Complex 2 (PRC2) subunit enhancer of zeste homolog 2 (EZH2), resulting in alterations to the epigenome and enhanced tumorigenesis. MiR-101-3p has also been shown to modulate various aspects of cellular metabolism, however little is known about the mechanisms involved. To investigate the metabolic pathways that are regulated by miR-101-3p, we performed transcriptome and functional analyses of osteosarcoma cells transfected with miR-101-3p. We found that miR-101-3p downregulates multiple mitochondrial processes, including oxidative phosphorylation, pyruvate metabolism, the citric acid cycle and phospholipid metabolism. We also found that miR-101-3p transfection disrupts the transcription of mitochondrial DNA (mtDNA) via the downregulation of the mitochondrial transcription initiation complex proteins TFB2M and Mic60. These alterations in transcript expression disrupt mitochondrial function, with significant decreases in both basal (54%) and maximal (67%) mitochondrial respiration rates. Native gel electrophoresis revealed that this diminished respiratory capacity was associated with reduced steady-state levels of mature succinate dehydrogenase (complex II), with a corresponding reduction of complex II enzymatic activity. Furthermore, miR-101-3p transfection reduced the expression of the SDHB subunit, with a concomitant disruption of the assembly of the SDHC subunit into mature complex II. Overall, we describe a new role for miR-101-3p as a modulator of mitochondrial metabolism via its regulation of multiple mitochondrial processes, including mtDNA transcription and complex II biogenesis.


Assuntos
MicroRNAs/metabolismo , Mitocôndrias/metabolismo , Succinato Desidrogenase/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Apoptose , Linhagem Celular Tumoral , DNA Mitocondrial , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Humanos , Redes e Vias Metabólicas , MicroRNAs/genética , Neoplasias/metabolismo , Osteossarcoma , Transdução de Sinais , Succinato Desidrogenase/genética
10.
Comput Struct Biotechnol J ; 19: 4896-4903, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34522293

RESUMO

microRNAs (miRNAs) are important modulators of messenger RNA stability and translation, controlling wide gene networks. Albeit generally modest on individual targets, the regulatory effect of miRNAs translates into meaningful pathway modulation through concurrent targeting of regulons with functional convergence. Identification of miRNA-regulons is therefore essential to understand the function of miRNAs and to help realise their therapeutic potential, but it remains challenging due to the large number of false positive target sites predicted per miRNA. In the current work, we investigated whether genes regulated by a given miRNA were under the transcriptional control of a predominant transcription factor (TF). Strikingly we found that for ~50% of the miRNAs analysed, their targets were significantly enriched in at least one common TF. We leveraged such miRNA-TF co-regulatory networks to identify pathways under miRNA control, and demonstrated that filtering predicted miRNA-target interactions (MTIs) relying on such pathways significantly enriched the proportion of predicted true MTIs. To our knowledge, this is the first description of an in- silico pipeline facilitating the identification of miRNA-regulons, to help understand miRNA function.

11.
Stem Cell Res Ther ; 12(1): 429, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34321089

RESUMO

BACKGROUND: Non-alcoholic fatty liver disease is the most common liver disease globally and in its inflammatory form, non-alcoholic steatohepatitis (NASH), can progress to cirrhosis and hepatocellular carcinoma (HCC). Currently, patient education and lifestyle changes are the major tools to prevent the continued progression of NASH. Emerging therapies in NASH target known pathological processes involved in the progression of the disease including inflammation, fibrosis, oxidative stress and hepatocyte apoptosis. Human amniotic epithelial cells (hAECs) were previously shown to be beneficial in experimental models of chronic liver injury, reducing hepatic inflammation and fibrosis. Previous studies have shown that liver progenitor cells (LPCs) response plays a significant role in the development of fibrosis and HCC in mouse models of fatty liver disease. In this study, we examined the effect hAECs have on the LPC response and hepatic oxidative stress in an experimental model of NASH. METHODS: Experimental NASH was induced in C57BL/6 J male mice using a high-fat, high fructose diet for 42 weeks. Mice received either a single intraperitoneal injection of 2 × 106 hAECs at week 34 or an additional hAEC dose at week 38. Changes to the LPC response and oxidative stress regulators were measured. RESULTS: hAEC administration significantly reduced the expansion of LPCs and their mitogens, IL-6, IFNγ and TWEAK. hAEC administration also reduced neutrophil infiltration and myeloperoxidase production with a concurrent increase in heme oxygenase-1 production. These observations were accompanied by a significant increase in total levels of anti-fibrotic IFNß in mice treated with a single dose of hAECs, which appeared to be independent of c-GAS-STING activation. CONCLUSIONS: Expansion of liver progenitor cells, hepatic inflammation and oxidative stress associated with experimental NASH were attenuated by hAEC administration. Given that repeated doses did not significantly increase efficacy, future studies assessing the impact of dose escalation and/or timing of dose may provide insights into clinical translation.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Animais , Carcinoma Hepatocelular/metabolismo , Dieta Hiperlipídica , Modelos Animais de Doenças , Células Epiteliais , Fígado/metabolismo , Neoplasias Hepáticas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , Estresse Oxidativo , Células-Tronco
12.
Nucleic Acids Res ; 49(11): 6082-6099, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34057477

RESUMO

Oligonucleotide-based therapeutics have the capacity to engage with nucleic acid immune sensors to activate or block their response, but a detailed understanding of these immunomodulatory effects is currently lacking. We recently showed that 2'-O-methyl (2'OMe) gapmer antisense oligonucleotides (ASOs) exhibited sequence-dependent inhibition of sensing by the RNA sensor Toll-Like Receptor (TLR) 7. Here we discovered that 2'OMe ASOs can also display sequence-dependent inhibitory effects on two major sensors of DNA, namely cyclic GMP-AMP synthase (cGAS) and TLR9. Through a screen of 80 2'OMe ASOs and sequence mutants, we characterized key features within the 20-mer ASOs regulating cGAS and TLR9 inhibition, and identified a highly potent cGAS inhibitor. Importantly, we show that the features of ASOs inhibiting TLR9 differ from those inhibiting cGAS, with only a few sequences inhibiting both pathways. Together with our previous studies, our work reveals a complex pattern of immunomodulation where 95% of the ASOs tested inhibited at least one of TLR7, TLR9 or cGAS by ≥30%, which may confound interpretation of their in vivo functions. Our studies constitute the broadest analysis of the immunomodulatory effect of 2'OMe ASOs on nucleic acid sensing to date and will support refinement of their therapeutic development.


Assuntos
Nucleotidiltransferases/antagonistas & inibidores , Oligonucleotídeos Antissenso/química , Receptor Toll-Like 9/antagonistas & inibidores , Adulto , Animais , Sequência de Bases , Células Cultivadas , DNA , Humanos , Camundongos , Transdução de Sinais , Receptor 3 Toll-Like/antagonistas & inibidores , Receptor 7 Toll-Like/antagonistas & inibidores
13.
Respirology ; 26(6): 618, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33851503
14.
Respirology ; 26(3): 222-224, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33350019
15.
Front Cell Dev Biol ; 9: 709618, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35087822

RESUMO

Activation of the STING pathway upon genotoxic treatment of cancer cells has been shown to lead to anti-tumoral effects, mediated through the acute production of interferon (IFN)-ß. Conversely, the pathway also correlates with the expression of NF-κB-driven pro-tumorigenic genes, but these associations are only poorly defined in the context of genotoxic treatment, and are thought to correlate with a chronic engagement of the pathway. We demonstrate here that half of the STING-expressing cancer cells from the NCI60 panel rapidly increased expression of pro-tumorigenic IL-6 upon genotoxic DNA damage, often independent of type-I IFN responses. While preferentially dependent on canonical STING, we demonstrate that genotoxic DNA damage induced by camptothecin (CPT) also drove IL-6 production through non-canonical STING signaling in selected cancer cells. Consequently, pharmacological inhibition of canonical STING failed to broadly inhibit IL-6 production induced by CPT, although this could be achieved through downstream ERK1/2 inhibition. Finally, prolonged inhibition of canonical STING signaling was associated with increased colony formation of MG-63 cells, highlighting the duality of STING signaling in also restraining the growth of selected cancer cells. Collectively, our findings demonstrate that genotoxic-induced DNA damage frequently leads to the rapid production of pro-tumorigenic IL-6 in cancer cells, independent of an IFN signature, through canonical and non-canonical STING activation; this underlines the complexity of STING engagement in human cancer cells, with frequent acute pro-tumorigenic activities induced by DNA damage. We propose that inhibition of ERK1/2 may help curb such pro-tumorigenic responses to DNA-damage, while preserving the anti-proliferative effects of the STING-interferon axis.

16.
Cell ; 183(3): 636-649.e18, 2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-33031745

RESUMO

Cytoplasmic accumulation of TDP-43 is a disease hallmark for many cases of amyotrophic lateral sclerosis (ALS), associated with a neuroinflammatory cytokine profile related to upregulation of nuclear factor κB (NF-κB) and type I interferon (IFN) pathways. Here we show that this inflammation is driven by the cytoplasmic DNA sensor cyclic guanosine monophosphate (GMP)-AMP synthase (cGAS) when TDP-43 invades mitochondria and releases DNA via the permeability transition pore. Pharmacologic inhibition or genetic deletion of cGAS and its downstream signaling partner STING prevents upregulation of NF-κB and type I IFN induced by TDP-43 in induced pluripotent stem cell (iPSC)-derived motor neurons and in TDP-43 mutant mice. Finally, we document elevated levels of the specific cGAS signaling metabolite cGAMP in spinal cord samples from patients, which may be a biomarker of mtDNA release and cGAS/STING activation in ALS. Our results identify mtDNA release and cGAS/STING activation as critical determinants of TDP-43-associated pathology and demonstrate the potential for targeting this pathway in ALS.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , DNA Mitocondrial/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Membrana/metabolismo , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Nucleotidiltransferases/metabolismo , Alarminas/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Citoplasma/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Células HEK293 , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Inflamação/metabolismo , Interferon Tipo I/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , NF-kappa B/metabolismo , Degeneração Neural/patologia , Fosfotransferases (Aceptor do Grupo Álcool) , Subunidades Proteicas/metabolismo , Transdução de Sinais
17.
Biomolecules ; 10(9)2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32932892

RESUMO

Signal transduction and the regulation of gene expression are fundamental processes in every cell. RNA-binding proteins (RBPs) play a key role in the post-transcriptional modulation of gene expression in response to both internal and external stimuli. However, how signaling pathways regulate the assembly of RBPs with mRNAs remains largely unknown. Here, we summarize observations showing that the formation and composition of messenger ribonucleoprotein particles (mRNPs) is dynamically remodeled in space and time by specific signaling cascades and the resulting post-translational modifications. The integration of signaling events with gene expression is key to the rapid adaptation of cells to environmental changes and stress. Only a combined approach analyzing the signal transduction pathways and the changes in post-transcriptional gene expression they cause will unravel the mechanisms coordinating these important cellular processes.


Assuntos
MicroRNAs/genética , Biossíntese de Proteínas , Processamento de Proteína Pós-Traducional , RNA Mensageiro/genética , Ribonucleoproteínas/genética , Transdução de Sinais/genética , Transporte Ativo do Núcleo Celular , Animais , Arabidopsis/genética , Arabidopsis/metabolismo , Humanos , Metilação , MicroRNAs/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação , Splicing de RNA , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sumoilação
18.
Immunol Cell Biol ; 98(9): 782-790, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32654231

RESUMO

Macrophage migration inhibitory factor (MIF) is a pleiotropic inflammatory molecule with both cytokine and noncytokine activity. MIF is constitutively released from multiple cell types via an unconventional secretory pathway that is not well defined. Here, we looked at MIF release from human and mouse monocytes/macrophages in response to different stimuli. While MIF release was not significantly altered in response to lipopolysaccharide or heat-killed Escherichia coli, cytotoxic stimuli strongly promoted release of MIF. MIF release was highly upregulated in cells undergoing necrosis, necroptosis and NLRP3 inflammasome-dependent pyroptosis. Our data suggest that cell death represents a major route for MIF release from myeloid cells. The functional significance of these findings and their potential importance in the context of autoimmune and inflammatory diseases warrant further investigation.


Assuntos
Fatores Inibidores da Migração de Macrófagos , Macrófagos/metabolismo , Monócitos/metabolismo , Necroptose , Animais , Morte Celular , Fatores Inibidores da Migração de Macrófagos/metabolismo , Camundongos , Piroptose
19.
Nucleic Acids Res ; 48(13): 7052-7065, 2020 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-32544249

RESUMO

Oligonucleotide-based therapeutics have become a reality, and are set to transform management of many diseases. Nevertheless, the modulatory activities of these molecules on immune responses remain incompletely defined. Here, we show that gene targeting 2'-O-methyl (2'OMe) gapmer antisense oligonucleotides (ASOs) can have opposing activities on Toll-Like Receptors 7 and 8 (TLR7/8), leading to divergent suppression of TLR7 and activation of TLR8, in a sequence-dependent manner. Surprisingly, TLR8 potentiation by the gapmer ASOs was blunted by locked nucleic acid (LNA) and 2'-methoxyethyl (2'MOE) modifications. Through a screen of 192 2'OMe ASOs and sequence mutants, we characterized the structural and sequence determinants of these activities. Importantly, we identified core motifs preventing the immunosuppressive activities of 2'OMe ASOs on TLR7. Based on these observations, we designed oligonucleotides strongly potentiating TLR8 sensing of Resiquimod, which preserve TLR7 function, and promote strong activation of phagocytes and immune cells. We also provide proof-of-principle data that gene-targeting ASOs can be selected to synergize with TLR8 agonists currently under investigation as immunotherapies, and show that rational ASO selection can be used to prevent unintended immune suppression of TLR7. Taken together, our work characterizes the immumodulatory effects of ASOs to advance their therapeutic development.


Assuntos
Oligodesoxirribonucleotídeos Antissenso/farmacologia , Receptor 7 Toll-Like/metabolismo , Receptor 8 Toll-Like/metabolismo , Células Cultivadas , Humanos , Imidazóis/metabolismo , Leucócitos Mononucleares , Oligonucleotídeos/metabolismo , Receptor 7 Toll-Like/agonistas , Receptor 8 Toll-Like/agonistas
20.
mBio ; 11(1)2020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-31992625

RESUMO

Activation of cyclic GMP-AMP (cGAMP) synthase (cGAS) plays a critical role in antiviral responses to many DNA viruses. Sensing of cytosolic DNA by cGAS results in synthesis of the endogenous second messenger cGAMP that activates stimulator of interferon genes (STING) in infected cells. Critically, cGAMP can also propagate antiviral responses to uninfected cells through intercellular transfer, although the modalities of this transfer between epithelial and immune cells remain poorly defined. We demonstrate here that cGAMP-producing epithelial cells can transactivate STING in cocultured macrophages through direct cGAMP transfer. cGAMP transfer was reliant upon connexin expression by epithelial cells and pharmacological inhibition of connexins blunted STING-dependent transactivation of the macrophage compartment. Macrophage transactivation by cGAMP contributed to a positive-feedback loop amplifying antiviral responses, significantly protecting uninfected epithelial cells against viral infection. Collectively, our findings constitute the first direct evidence of a connexin-dependent cGAMP transfer to macrophages by epithelial cells, to amplify antiviral responses.IMPORTANCE Recent studies suggest that extracellular cGAMP can be taken up by macrophages to engage STING through several mechanisms. Our work demonstrates that connexin-dependent communication between epithelial cells and macrophages plays a significant role in the amplification of antiviral responses mediated by cGAMP and suggests that pharmacological strategies aimed at modulating connexins may have therapeutic applications to control antiviral responses in humans.


Assuntos
Conexinas/metabolismo , Interações Hospedeiro-Patógeno , Nucleotídeos Cíclicos/metabolismo , Fagócitos/imunologia , Fagócitos/metabolismo , Viroses/etiologia , Viroses/metabolismo , Animais , Biomarcadores , Células Cultivadas , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunomodulação , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...