Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 7561, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37985762

RESUMO

Culex mosquitoes pose a significant public health threat as vectors for a variety of diseases including West Nile virus and lymphatic filariasis, and transmit pathogens threatening livestock, companion animals, and endangered birds. Rampant insecticide resistance makes controlling these mosquitoes challenging and necessitates the development of new control strategies. Gene drive technologies have made significant progress in other mosquito species, although similar advances have been lagging in Culex. Here we test a CRISPR-based homing gene drive for Culex quinquefasciatus, and show that the inheritance of two split-gene-drive transgenes, targeting different loci, are biased in the presence of a Cas9-expressing transgene although with modest efficiencies. Our findings extend the list of disease vectors where engineered homing gene drives have been demonstrated to include Culex alongside Anopheles and Aedes, and pave the way for future development of these technologies to control Culex mosquitoes.


Assuntos
Aedes , Culex , Tecnologia de Impulso Genético , Animais , Culex/genética , Mosquitos Vetores/genética , Aedes/genética , Vetores de Doenças
2.
bioRxiv ; 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37398284

RESUMO

Culex mosquitoes pose a significant public health threat as vectors for a variety of diseases including West Nile virus and lymphatic filariasis, and transmit pathogens threatening livestock, companion animals, and endangered birds. Rampant insecticide resistance makes controlling these mosquitoes challenging and necessitates the development of new control strategies. Gene drive technologies have made significant progress in other mosquito species, although similar advances have been lagging in Culex. Here we test the first CRISPR-based homing gene drive for Culex quinquefasciatus, demonstrating the possibility of using this technology to control Culex mosquitoes. Our results show that the inheritance of two split-gene-drive transgenes, targeting different loci, are biased in the presence of a Cas9-expressing transgene although with modest efficiencies. Our findings extend the list of disease vectors where engineered homing gene drives have been demonstrated to include Culex alongside Anopheles and Aedes, and pave the way for future development of these technologies to control Culex mosquitoes.

3.
Bioessays ; 44(8): e2100279, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35686327

RESUMO

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-based "active genetic" elements developed in 2015 bypassed the fundamental rules of traditional genetics. Inherited in a super-Mendelian fashion, such selfish genetic entities offered a variety of potential applications including: gene-drives to disseminate gene cassettes carrying desired traits throughout insect populations to control disease vectors or pest species, allelic drives biasing inheritance of preferred allelic variants, neutralizing genetic elements to delete and replace or to halt the spread of gene-drives, split-drives with the core constituent Cas9 endonuclease and guide RNA (gRNA) components inserted at separate genomic locations to accelerate assembly of complex arrays of genetic traits or to gain genetic entry into novel organisms (vertebrates, plants, bacteria), and interhomolog based copying systems in somatic cells to develop tools for treating inherited or infectious diseases. Here, we summarize the substantial advances that have been made on all of these fronts and look forward to the next phase of this rapidly expanding and impactful field.


Assuntos
Sistemas CRISPR-Cas , Tecnologia de Impulso Genético , Animais , Sistemas CRISPR-Cas/genética , Edição de Genes , Padrões de Herança , RNA Guia de Cinetoplastídeos/genética
4.
Cell Rep ; 39(8): 110843, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35613590

RESUMO

CRISPR-based gene-drives have been proposed for managing insect populations, including disease-transmitting mosquitoes, due to their ability to bias their inheritance toward super-Mendelian rates (>50%). Current technologies use a Cas9 that introduces DNA double-strand breaks into the opposing wild-type allele to replace it with a copy of the gene-drive allele via DNA homology-directed repair. However, the use of different Cas9 versions is unexplored, and alternative approaches could increase the available toolkit for gene-drive designs. Here, we report a gene-drive that relies on Cas9 nickases that generate staggered paired nicks in DNA to propagate the engineered gene-drive cassette. We show that generating 5' overhangs in the system yields efficient allelic conversion. The nickase gene-drive arrangement produces large, stereotyped deletions that are advantageous to eliminate viable animals carrying small mutations when targeting essential genes. Our nickase approach should expand the repertoire for gene-drive arrangements aimed at applications in mosquitoes and beyond.


Assuntos
Desoxirribonuclease I , Tecnologia de Impulso Genético , Animais , Sistemas CRISPR-Cas/genética , DNA , Desoxirribonuclease I/metabolismo , Drosophila/metabolismo , Edição de Genes
5.
Nat Commun ; 13(1): 2351, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35534455

RESUMO

Programmable double-strand DNA breaks (DSBs) can be harnessed for precision genome editing through manipulation of the homology-directed repair (HDR) pathway. However, end-joining repair pathways often outcompete HDR and introduce insertions and deletions of bases (indels) at the DSB site, decreasing precision outcomes. It has been shown that indel sequences for a given DSB site are reproducible and can even be predicted. Here, we report a general strategy (the "double tap" method) to improve HDR-mediated precision genome editing efficiencies that takes advantage of the reproducible nature of indel sequences. The method simply involves the use of multiple gRNAs: a primary gRNA that targets the wild-type genomic sequence, and one or more secondary gRNAs that target the most common indel sequence(s), which in effect provides a "second chance" at HDR-mediated editing. This proof-of-principle study presents the double tap method as a simple yet effective option for enhancing precision editing in mammalian cells.


Assuntos
Edição de Genes , RNA Guia de Cinetoplastídeos , Animais , Sistemas CRISPR-Cas/genética , Reparo do DNA por Junção de Extremidades , Edição de Genes/métodos , Mamíferos/genética , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , Reparo de DNA por Recombinação
6.
Nat Commun ; 13(1): 2595, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35534475

RESUMO

Homing CRISPR gene drives could aid in curbing the spread of vector-borne diseases and controlling crop pest and invasive species populations due to an inheritance rate that surpasses Mendelian laws. However, this technology suffers from resistance alleles formed when the drive-induced DNA break is repaired by error-prone pathways, which creates mutations that disrupt the gRNA recognition sequence and prevent further gene-drive propagation. Here, we attempt to counteract this by encoding additional gRNAs that target the most commonly generated resistance alleles into the gene drive, allowing a second opportunity at gene-drive conversion. Our presented "double-tap" strategy improved drive efficiency by recycling resistance alleles. The double-tap drive also efficiently spreads in caged populations, outperforming the control drive. Overall, this double-tap strategy can be readily implemented in any CRISPR-based gene drive to improve performance, and similar approaches could benefit other systems suffering from low HDR frequencies, such as mammalian cells or mouse germline transformations.


Assuntos
Tecnologia de Impulso Genético , Alelos , Animais , Sistemas CRISPR-Cas/genética , Células Germinativas , Mamíferos/genética , Camundongos , RNA Guia de Cinetoplastídeos/genética
7.
Insect Biochem Mol Biol ; 142: 103720, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34999199

RESUMO

Insect ommochrome biosynthesis pathways metabolize tryptophan to generate eye-color pigments and wild-type alleles of pathway genes are useful phenotypic markers in transgenesis studies. Pleiotropic effects of mutations in some genes exert a load on both survival and reproductive success in blood-feeding species. Here, we investigated the challenges imposed on mosquitoes by the increase of tryptophan metabolites resulting from blood meal digestion and the impact of disruptions of the ommochrome biosynthesis pathway. Female mosquitoes with spontaneous and induced mutations in the orthologs of the genes encoding kynurenine hydroxylase in Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus exhibited impaired survival and reproductive phenotypes that varied in type and severity among the species. A compromised midgut permeability barrier function was also observed in An. stephensi. Surprisingly, mutant mosquitoes displayed an increase in microbiota compared to controls that was not accompanied by a general induction of immune genes. Antibiotic treatment rescued some deleterious traits implicating a role for the kynurenine pathway (KP) in midgut homeostasis. Supplemental xanthurenic acid, a KP end-product, rescued lethality and limited microbiota proliferation in Ae. aegypti. These data implicate the KP in the regulation of the host/microbiota interface. These pleiotropic effects on mosquito physiology are important in the development of genetic strategies targeting vector mosquitoes.


Assuntos
Aedes , Culex , Aedes/metabolismo , Animais , Feminino , Homeostase , Cinurenina/metabolismo , Cinurenina/farmacologia , Mosquitos Vetores , Triptofano/metabolismo
8.
PLoS Biol ; 19(12): e3001478, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34941868

RESUMO

Highly efficient gene conversion systems have the potential to facilitate the study of complex genetic traits using laboratory mice and, if implemented as a "gene drive," to limit loss of biodiversity and disease transmission caused by wild rodent populations. We previously showed that such a system of gene conversion from heterozygous to homozygous after a sequence targeted CRISPR/Cas9 double-strand DNA break (DSB) is feasible in the female mouse germline. In the male germline, however, all DSBs were instead repaired by end joining (EJ) mechanisms to form an "insertion/deletion" (indel) mutation. These observations suggested that timing Cas9 expression to coincide with meiosis I is critical to favor conditions when homologous chromosomes are aligned and interchromosomal homology-directed repair (HDR) mechanisms predominate. Here, using a Cas9 knock-in allele at the Spo11 locus, we show that meiotic expression of Cas9 does indeed mediate gene conversion in the male as well as in the female germline. However, the low frequency of both HDR and indel mutation in both male and female germlines suggests that Cas9 may be expressed from the Spo11 locus at levels too low for efficient DSB formation. We suggest that more robust Cas9 expression initiated during early meiosis I may improve the efficiency of gene conversion and further increase the rate of "super-mendelian" inheritance from both male and female mice.


Assuntos
Proteína 9 Associada à CRISPR/metabolismo , Conversão Gênica/genética , Edição de Genes/métodos , Animais , Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , Feminino , Expressão Gênica/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Engenharia Genética/métodos , Células Germinativas/metabolismo , Masculino , Meiose/genética , Camundongos , RNA Guia de Cinetoplastídeos/genética , Reparo de DNA por Recombinação/genética
9.
CRISPR J ; 4(4): 595-608, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34280034

RESUMO

Culex quinquefasciatus mosquitoes are a globally widespread vector of several human and animal pathogens. Their biology and behavior allow them to thrive in proximity to urban areas, rendering them a constant public health threat. Their mixed bird/mammal feeding behavior further offers a vehicle for zoonotic pathogens transmission to people and, separately, poses a threat to the conservation of insular birds. The advent of CRISPR has led to the development of novel technologies for the genetic engineering of wild mosquito populations. Yet, research into Cx. quinquefasciatus has been lagging compared to other disease vectors. Here, we use this tool to disrupt a set of five pigmentation genes in Cx. quinquefasciatus that, when altered, lead to visible, homozygous-viable phenotypes. We further validate this approach in separate laboratories and in two distinct strains of Cx. quinquefasciatus that are relevant to potential future public health and bird conservation applications. We generate a double-mutant line, demonstrating the possibility of sequentially combining multiple such mutations in a single individual. Lastly, we target two loci, doublesex in the sex-determination pathway and proboscipedia, a hox gene, demonstrating the flexibility of these methods applied to novel targets. Our work provides a platform of seven validated loci that could be used for targeted mutagenesis in Cx. quinquefasciatus and the future development of genetic suppression strategies for this species. Furthermore, the mutant lines generated here could have widespread utility to the research community using this model organism, as they could be used as targets for transgene delivery, where a copy of the disrupted gene could be included as an easily scored transgenesis marker.


Assuntos
Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Culex/genética , Edição de Genes , Técnicas de Inativação de Genes , Engenharia Genética , Animais , Culicidae/genética , Edição de Genes/métodos , Marcação de Genes , Engenharia Genética/métodos , Loci Gênicos , Microinjeções , Mutação , Fenótipo , RNA Guia de Cinetoplastídeos
10.
Nat Commun ; 12(1): 2625, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33976171

RESUMO

CRISPR-based active genetic elements, or gene-drives, copied via homology-directed repair (HDR) in the germline, are transmitted to progeny at super-Mendelian frequencies. Active genetic elements also can generate widespread somatic mutations, but the genetic basis for such phenotypes remains uncertain. It is generally assumed that such somatic mutations are generated by non-homologous end-joining (NHEJ), the predominant double stranded break repair pathway active in somatic cells. Here, we develop CopyCatcher systems in Drosophila to detect and quantify somatic gene conversion (SGC) events. CopyCatchers inserted into two independent genetic loci reveal unexpectedly high rates of SGC in the Drosophila eye and thoracic epidermis. Focused RNAi-based genetic screens identify several unanticipated loci altering SGC efficiency, one of which (c-MYC), when downregulated, promotes SGC mediated by both plasmid and homologous chromosome-templates in human HEK293T cells. Collectively, these studies suggest that CopyCatchers can serve as effective discovery platforms to inform potential gene therapy strategies.


Assuntos
Sistemas CRISPR-Cas/genética , Reparo do DNA por Junção de Extremidades , Conversão Gênica , Edição de Genes/métodos , Reparo de DNA por Recombinação , Animais , Animais Geneticamente Modificados , Drosophila/genética , Estudos de Viabilidade , Feminino , Loci Gênicos , Terapia Genética/métodos , Células HEK293 , Humanos , Masculino , Modelos Animais , Proteínas Proto-Oncogênicas c-myc/genética
11.
Nat Commun ; 12(1): 2960, 2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-34017003

RESUMO

Culex mosquitoes are a global vector for multiple human and animal diseases, including West Nile virus, lymphatic filariasis, and avian malaria, posing a constant threat to public health, livestock, companion animals, and endangered birds. While rising insecticide resistance has threatened the control of Culex mosquitoes, advances in CRISPR genome-editing tools have fostered the development of alternative genetic strategies such as gene drive systems to fight disease vectors. However, though gene-drive technology has quickly progressed in other mosquitoes, advances have been lacking in Culex. Here, we develop a Culex-specific Cas9/gRNA expression toolkit and use site-directed homology-based transgenesis to generate and validate a Culex quinquefasciatus Cas9-expressing line. We show that gRNA scaffold variants improve transgenesis efficiency in both Culex quinquefasciatus and Drosophila melanogaster and boost gene-drive performance in the fruit fly. These findings support future technology development to control Culex mosquitoes and provide valuable insight for improving these tools in other species.


Assuntos
Sistemas CRISPR-Cas/genética , Culex/genética , Tecnologia de Impulso Genético/métodos , Controle de Mosquitos/métodos , Mosquitos Vetores/genética , Animais , Animais Geneticamente Modificados , Drosophila melanogaster/genética , Feminino , Resistência a Inseticidas , Masculino , Mutagênese Sítio-Dirigida/métodos , RNA Guia de Cinetoplastídeos/genética
13.
Nat Commun ; 11(1): 5553, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33144570

RESUMO

Cas9/gRNA-mediated gene-drive systems have advanced development of genetic technologies for controlling vector-borne pathogen transmission. These technologies include population suppression approaches, genetic analogs of insecticidal techniques that reduce the number of insect vectors, and population modification (replacement/alteration) approaches, which interfere with competence to transmit pathogens. Here, we develop a recoded gene-drive rescue system for population modification of the malaria vector, Anopheles stephensi, that relieves the load in females caused by integration of the drive into the kynurenine hydroxylase gene by rescuing its function. Non-functional resistant alleles are eliminated via a dominantly-acting maternal effect combined with slower-acting standard negative selection, and rare functional resistant alleles do not prevent drive invasion. Small cage trials show that single releases of gene-drive males robustly result in efficient population modification with ≥95% of mosquitoes carrying the drive within 5-11 generations over a range of initial release ratios.


Assuntos
Anopheles/genética , Malária/parasitologia , Alelos , Animais , Proteína 9 Associada à CRISPR/metabolismo , Feminino , Genética Populacional , Proteínas de Fluorescência Verde/metabolismo , Heterozigoto , Padrões de Herança/genética , Quinurenina 3-Mono-Oxigenase/genética , Masculino , Modelos Genéticos , Mosaicismo , Fenótipo , Filogenia , RNA Guia de Cinetoplastídeos/metabolismo
14.
Mol Cell ; 80(2): 246-262.e4, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32949493

RESUMO

CRISPR-Cas9-based gene drive systems possess the inherent capacity to spread progressively throughout target populations. Here we describe two self-copying (or active) guide RNA-only genetic elements, called e-CHACRs and ERACRs. These elements use Cas9 produced in trans by a gene drive either to inactivate the cas9 transgene (e-CHACRs) or to delete and replace the gene drive (ERACRs). e-CHACRs can be inserted at various genomic locations and carry two or more gRNAs, the first copying the e-CHACR and the second mutating and inactivating the cas9 transgene. Alternatively, ERACRs are inserted at the same genomic location as a gene drive, carrying two gRNAs that cut on either side of the gene drive to excise it. e-CHACRs efficiently inactivate Cas9 and can drive to completion in cage experiments. Similarly, ERACRs, particularly those carrying a recoded cDNA-restoring endogenous gene activity, can drive reliably to fully replace a gene drive. We compare the strengths of these two systems.


Assuntos
Deleção de Genes , Tecnologia de Impulso Genético , Animais , Proteína 9 Associada à CRISPR/metabolismo , Cromossomos/genética , Drosophila melanogaster/genética , Feminino , Proteínas de Fluorescência Verde/metabolismo , Padrões de Herança/genética , Mutagênese/genética , RNA Guia de Cinetoplastídeos/genética , Transgenes
15.
Cell Rep ; 31(13): 107841, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32610142

RESUMO

Synthetic CRISPR-based gene-drive systems have tremendous potential in public health and agriculture, such as for fighting vector-borne diseases or suppressing crop pest populations. These elements can rapidly spread in a population by breaching the inheritance limit of 50% dictated by Mendel's law of gene segregation, making them a promising tool for population engineering. However, current technologies lack control over their propagation capacity, and there are important concerns about potential unchecked spreading. Here, we describe a gene-drive system in Drosophila that generates an analog inheritance output that can be tightly and conditionally controlled to between 50% and 100%. This technology uses a modified SpCas9 that responds to a synthetic, orally available small molecule, fine-tuning the inheritance probability. This system opens a new avenue to feasibility studies for spatial and temporal control of gene drives using small molecules.


Assuntos
Drosophila melanogaster/genética , Tecnologia de Impulso Genético , Padrões de Herança/genética , Bibliotecas de Moléculas Pequenas/metabolismo , Animais , Animais Geneticamente Modificados , Proteína 9 Associada à CRISPR/metabolismo , Preparações Farmacêuticas
16.
Nat Commun ; 11(1): 352, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31953404

RESUMO

CRISPR-based gene drives can spread through wild populations by biasing their own transmission above the 50% value predicted by Mendelian inheritance. These technologies offer population-engineering solutions for combating vector-borne diseases, managing crop pests, and supporting ecosystem conservation efforts. Current technologies raise safety concerns for unintended gene propagation. Herein, we address such concerns by splitting the drive components, Cas9 and gRNAs, into separate alleles to form a trans-complementing split-gene-drive (tGD) and demonstrate its ability to promote super-Mendelian inheritance of the separate transgenes. This dual-component configuration allows for combinatorial transgene optimization and increases safety by restricting escape concerns to experimentation windows. We employ the tGD and a small-molecule-controlled version to investigate the biology of component inheritance and resistant allele formation, and to study the effects of maternal inheritance and impaired homology on efficiency. Lastly, mathematical modeling of tGD spread within populations reveals potential advantages for improving current gene-drive technologies for field population modification.


Assuntos
Tecnologia de Impulso Genético/métodos , Genética Populacional/métodos , Alelos , Animais , Animais Geneticamente Modificados , Sequência de Bases , Sistemas CRISPR-Cas , Dípteros , Ecossistema , Feminino , Edição de Genes , Genes Ligados ao Cromossomo X , Masculino , Modelos Teóricos , RNA Guia de Cinetoplastídeos/genética , Transgenes
17.
Nature ; 577(7792): E8, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31911657

RESUMO

An Amendment to this paper has been published and can be accessed via a link at the top of the paper.

18.
G3 (Bethesda) ; 10(2): 827-837, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-31882406

RESUMO

Homing based gene drives (HGD) possess the potential to spread linked cargo genes into natural populations and are poised to revolutionize population control of animals. Given that host encoded genes have been identified that are important for pathogen transmission, targeting these genes using guide RNAs as cargo genes linked to drives may provide a robust method to prevent disease transmission. However, effectiveness of the inclusion of additional guide RNAs that target separate genes has not been thoroughly explored. To test this approach, we generated a split-HGD in Drosophila melanogaster that encoded a drive linked effector consisting of a second gRNA engineered to target a separate host-encoded gene, which we term a gRNA-mediated effector (GME). This design enabled us to assess homing and knockout efficiencies of two target genes simultaneously, and also explore the timing and tissue specificity of Cas9 expression on cleavage/homing rates. We demonstrate that inclusion of a GME can result in high efficiency of disruption of both genes during super-Mendelian propagation of split-HGD. Furthermore, both genes were knocked out one generation earlier than expected indicating the robust somatic expression of Cas9 driven by Drosophila germline-limited promoters. We also assess the efficiency of 'shadow drive' generated by maternally deposited Cas9 protein and accumulation of drive-induced resistance alleles along multiple generations, and discuss design principles of HGD that could mitigate the accumulation of resistance alleles while incorporating a GME.


Assuntos
Tecnologia de Impulso Genético , Técnicas de Inativação de Genes , Marcação de Genes , Sistemas CRISPR-Cas , Edição de Genes , Ordem dos Genes , Marcação de Genes/métodos , Vetores Genéticos/genética , Técnicas de Genotipagem , Modelos Genéticos , Mutação , RNA Guia de Cinetoplastídeos , Zigoto/metabolismo
19.
Nat Commun ; 10(1): 1640, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30967548

RESUMO

Gene-drive systems developed in several organisms result in super-Mendelian inheritance of transgenic insertions. Here, we generalize this "active genetic" approach to preferentially transmit allelic variants (allelic-drive) resulting from only a single or a few nucleotide alterations. We test two configurations for allelic-drive: one, copy-cutting, in which a non-preferred allele is selectively targeted for Cas9/guide RNA (gRNA) cleavage, and a more general approach, copy-grafting, that permits selective inheritance of a desired allele located in close proximity to the gRNA cut site. We also characterize a phenomenon we refer to as lethal-mosaicism that dominantly eliminates NHEJ-induced mutations and favors inheritance of functional cleavage-resistant alleles. These two efficient allelic-drive methods, enhanced by lethal mosaicism and a trans-generational drive process we refer to as "shadow-drive", have broad practical applications in improving health and agriculture and greatly extend the active genetics toolbox.


Assuntos
Alelos , Reparo do DNA por Junção de Extremidades/genética , Drosophila/genética , Tecnologia de Impulso Genético/métodos , Agricultura/métodos , Animais , Animais Geneticamente Modificados/genética , Sistemas CRISPR-Cas/genética , Análise Mutacional de DNA , Feminino , Edição de Genes/métodos , Padrões de Herança/genética , Masculino , Mosaicismo , RNA Guia de Cinetoplastídeos/genética
20.
Nature ; 566(7742): 105-109, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30675057

RESUMO

A gene drive biases the transmission of one of the two copies of a gene such that it is inherited more frequently than by random segregation. Highly efficient gene drive systems have recently been developed in insects, which leverage the sequence-targeted DNA cleavage activity of CRISPR-Cas9 and endogenous homology-directed repair mechanisms to convert heterozygous genotypes to homozygosity1-4. If implemented in laboratory rodents, similar systems would enable the rapid assembly of currently impractical genotypes that involve multiple homozygous genes (for example, to model multigenic human diseases). To our knowledge, however, such a system has not yet been demonstrated in mammals. Here we use an active genetic element that encodes a guide RNA, which is embedded in the mouse tyrosinase (Tyr) gene, to evaluate whether targeted gene conversion can occur when CRISPR-Cas9 is active in the early embryo or in the developing germline. Although Cas9 efficiently induces double-stranded DNA breaks in the early embryo and male germline, these breaks are not corrected by homology-directed repair. By contrast, Cas9 expression limited to the female germline induces double-stranded breaks that are corrected by homology-directed repair, which copies the active genetic element from the donor to the receiver chromosome and increases its rate of inheritance in the next generation. These results demonstrate the feasibility of CRISPR-Cas9-mediated systems that bias inheritance of desired alleles in mice and that have the potential to transform the use of rodent models in basic and biomedical research.


Assuntos
Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Conversão Gênica , Tecnologia de Impulso Genético/métodos , Mutação em Linhagem Germinativa/genética , Heterozigoto , Homozigoto , Alelos , Animais , Cruzamento , Proteína 9 Associada à CRISPR/genética , Cromossomos de Mamíferos/genética , Quebras de DNA de Cadeia Dupla , Modelos Animais de Doenças , Embrião de Mamíferos/enzimologia , Embrião de Mamíferos/metabolismo , Feminino , Integrases/genética , Integrases/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Monofenol Mono-Oxigenase/genética , RNA Guia de Cinetoplastídeos/genética , Transgenes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...