Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Gastrointest Liver Physiol ; 324(3): G196-G206, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36625480

RESUMO

The enteric nervous system (ENS) is the intrinsic nervous system of the gastrointestinal tract (GI) and regulates important GI functions, including motility, nutrient uptake, and immune response. The development of the ENS begins during early organogenesis and continues to develop once feeding begins, with ongoing plasticity into adulthood. There has been increasing recognition that the intestinal microbiota and ENS interact during critical periods, with implications for normal development and potential disease pathogenesis. In this review, we focus on insights from mouse and zebrafish model systems to compare and contrast how each model can serve in elucidating the bidirectional communication between the ENS and the microbiome. At the end of this review, we further outline implications for human disease and highlight research innovations that can lead the field forward.


Assuntos
Sistema Nervoso Entérico , Microbioma Gastrointestinal , Microbiota , Humanos , Camundongos , Animais , Peixe-Zebra , Sistema Nervoso Entérico/fisiologia , Trato Gastrointestinal , Microbioma Gastrointestinal/fisiologia
2.
Int J Mol Sci ; 23(24)2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36555308

RESUMO

The receptor tyrosine kinase Ret plays a critical role in regulating enteric nervous system (ENS) development. Ret is important for proliferation, migration, and survival of enteric progenitor cells (EPCs). Ret also promotes neuronal fate, but its role during neuronal differentiation and in the adult ENS is less well understood. Inactivating RET mutations are associated with ENS diseases, e.g., Hirschsprung Disease, in which distal bowel lacks ENS cells. Zebrafish is an established model system for studying ENS development and modeling human ENS diseases. One advantage of the zebrafish model system is that their embryos are transparent, allowing visualization of developmental phenotypes in live animals. However, we lack tools to monitor Ret expression in live zebrafish. Here, we developed a new BAC transgenic line that expresses GFP under the ret promoter. We find that EPCs and the majority of ENS neurons express ret:GFP during ENS development. In the adult ENS, GFP+ neurons are equally present in females and males. In homozygous mutants of ret and sox10-another important ENS developmental regulator gene-GFP+ ENS cells are absent. In summary, we characterize a ret:GFP transgenic line as a new tool to visualize and study the Ret signaling pathway from early development through adulthood.


Assuntos
Sistema Nervoso Entérico , Peixe-Zebra , Animais , Masculino , Feminino , Humanos , Adulto , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Sistema Nervoso Entérico/metabolismo , Transdução de Sinais , Animais Geneticamente Modificados , Proteínas Proto-Oncogênicas c-ret/genética , Proteínas Proto-Oncogênicas c-ret/metabolismo
3.
Int J Mol Sci ; 23(9)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35563190

RESUMO

The neural-crest-derived enteric nervous system (ENS) is the intrinsic nervous system of the gastrointestinal (GI) tract and controls all gut functions, including motility. Lack of ENS neurons causes various ENS disorders such as Hirschsprung Disease. One treatment option for ENS disorders includes the activation of resident stem cells to regenerate ENS neurons. Regeneration in the ENS has mainly been studied in mammalian species using surgical or chemically induced injury methods. These mammalian studies showed a variety of regenerative responses with generally limited regeneration of ENS neurons but (partial) regrowth and functional recovery of nerve fibers. Several aspects might contribute to the variety in regenerative responses, including observation time after injury, species, and gut region targeted. Zebrafish have recently emerged as a promising model system to study ENS regeneration as larvae possess the ability to generate new neurons after ablation. As the next steps in ENS regeneration research, we need a detailed understanding of how regeneration is regulated on a cellular and molecular level in animal models with both high and low regenerative capacity. Understanding the regulatory programs necessary for robust ENS regeneration will pave the way for using neural regeneration as a therapeutic approach to treating ENS disorders.


Assuntos
Sistema Nervoso Entérico , Peixe-Zebra , Animais , Encéfalo , Mamíferos , Crista Neural , Neurônios
5.
Dev Biol ; 455(2): 473-484, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31394080

RESUMO

Intestinal tract development is a coordinated process involving signaling among the progenitors and developing cells from all three germ layers. Development of endoderm-derived intestinal epithelium has been shown to depend on epigenetic modifications, but whether that is also the case for intestinal tract cell types from other germ layers remains unclear. We found that functional loss of a DNA methylation machinery component, ubiquitin-like protein containing PHD and RING finger domains 1 (uhrf1), leads to reduced numbers of ectoderm-derived enteric neurons and severe disruption of mesoderm-derived intestinal smooth muscle. Genetic chimeras revealed that Uhrf1 functions both cell-autonomously in enteric neuron precursors and cell-non-autonomously in surrounding intestinal cells, consistent with what is known about signaling interactions between these cell types that promote one another's development. Uhrf1 recruits the DNA methyltransferase Dnmt1 to unmethylated DNA during replication. Dnmt1 is also expressed in enteric neurons and smooth muscle progenitors. dnmt1 mutants have fewer enteric neurons and disrupted intestinal smooth muscle compared to wildtypes. Because dnmt1;uhrf1 double mutants have a similar phenotype to dnmt1 and uhrf1 single mutants, Dnmt1 and Uhrf1 must function together during enteric neuron and intestinal muscle development. This work shows that genes controlling epigenetic modifications are important to coordinate intestinal tract development, provides the first demonstration that these genes influence development of the ENS, and advances uhrf1 and dnmt1 as potential new Hirschsprung disease candidates.


Assuntos
DNA (Citosina-5-)-Metiltransferase 1/fisiologia , Sistema Nervoso Entérico/embriologia , Epigênese Genética , Intestinos/embriologia , Transativadores/fisiologia , Proteínas de Peixe-Zebra/fisiologia , Animais , Quimera , DNA (Citosina-5-)-Metiltransferase 1/genética , Células-Tronco Embrionárias/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Intestinos/citologia , Intestinos/inervação , Masculino , Músculo Liso/embriologia , Mutação , Neurônios , Transativadores/genética , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
6.
J Neurosci ; 38(44): 9346-9354, 2018 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-30381426

RESUMO

The enteric nervous system (ENS) is a large, complex division of the peripheral nervous system that regulates many digestive, immune, hormonal, and metabolic functions. Recent advances have elucidated the dynamic nature of the mature ENS, as well as the complex, bidirectional interactions among enteric neurons, glia, and the many other cell types that are important for mediating gut behaviors. Here, we provide an overview of ENS development and maintenance, and focus on the latest insights gained from the use of novel model systems and live-imaging techniques. We discuss major advances in the understanding of enteric glia, and the functional interactions among enteric neurons, glia, and enteroendocrine cells, a large class of sensory epithelial cells. We conclude by highlighting recent work on muscularis macrophages, a group of immune cells that closely interact with the ENS in the gut wall, and the importance of neurological-immune system communication in digestive health and disease.


Assuntos
Encéfalo/metabolismo , Sistema Nervoso Entérico/metabolismo , Gastroenteropatias/metabolismo , Trato Gastrointestinal/metabolismo , Animais , Encéfalo/imunologia , Encéfalo/patologia , Sistema Nervoso Entérico/imunologia , Sistema Nervoso Entérico/patologia , Gastroenteropatias/imunologia , Gastroenteropatias/patologia , Trato Gastrointestinal/imunologia , Trato Gastrointestinal/patologia , Humanos , Neurobiologia
7.
PLoS Genet ; 14(9): e1007538, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30226839

RESUMO

Fishes of the genus Danio exhibit diverse pigment patterns that serve as useful models for understanding the genes and cell behaviors underlying the evolution of adult form. Among these species, zebrafish D. rerio exhibit several dark stripes of melanophores with sparse iridophores that alternate with light interstripes of dense iridophores and xanthophores. By contrast, the closely related species D. nigrofasciatus has an attenuated pattern with fewer melanophores, stripes and interstripes. Here we demonstrate species differences in iridophore development that presage the fully formed patterns. Using genetic and transgenic approaches we identify the secreted peptide Endothelin-3 (Edn3)-a known melanogenic factor of tetrapods-as contributing to reduced iridophore proliferation and fewer stripes and interstripes in D. nigrofasciatus. We further show the locus encoding this factor is expressed at lower levels in D. nigrofasciatus owing to cis-regulatory differences between species. Finally, we show that functions of two paralogous loci encoding Edn3 have been partitioned between skin and non-skin iridophores. Our findings reveal genetic and cellular mechanisms contributing to pattern differences between these species and suggest a model for evolutionary changes in Edn3 requirements for pigment patterning and its diversification across vertebrates.


Assuntos
Cromatóforos/fisiologia , Endotelina-3/metabolismo , Pigmentação/genética , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/fisiologia , Animais , Animais Geneticamente Modificados , Proliferação de Células , Embrião não Mamífero , Endotelina-3/genética , Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Modelos Animais , Fenótipo , Transdução de Sinais/genética , Pele/citologia , Especificidade da Espécie , Proteínas de Peixe-Zebra/genética
8.
Development ; 145(4)2018 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-29475973

RESUMO

Resident microbes promote many aspects of host development, although the mechanisms by which microbiota influence host tissues remain unclear. We showed previously that the microbiota is required for allocation of appropriate numbers of secretory cells in the zebrafish intestinal epithelium. Because Notch signaling is crucial for secretory fate determination, we conducted epistasis experiments to establish whether the microbiota modulates host Notch signaling. We also investigated whether innate immune signaling transduces microbiota cues via the Myd88 adaptor protein. We provide the first evidence that microbiota-induced, Myd88-dependent signaling inhibits host Notch signaling in the intestinal epithelium, thereby promoting secretory cell fate determination. These results connect microbiota activity via innate immune signaling to the Notch pathway, which also plays crucial roles in intestinal homeostasis throughout life and when impaired can result in chronic inflammation and cancer.


Assuntos
Mucosa Intestinal/metabolismo , Microbiota , Fator 88 de Diferenciação Mieloide/metabolismo , Receptores Notch/metabolismo , Animais , Mucosa Intestinal/microbiologia , Mucosa Intestinal/fisiologia , Transdução de Sinais/fisiologia , Peixe-Zebra/metabolismo
9.
Dev Dyn ; 247(2): 268-278, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28975691

RESUMO

The enteric nervous system (ENS) is the largest part of the peripheral nervous system and is entirely neural crest-derived. It provides the intrinsic innervation of the gut, controlling different aspects of gut function, such as motility. In this review, we will discuss key points of Zebrafish ENS development, genes, and signaling pathways regulating ENS development, as well as contributions of the Zebrafish model system to better understand ENS disorders. During their migration, enteric progenitor cells (EPCs) display a gradient of developmental states based on their proliferative and migratory characteristics, and show spatiotemporal heterogeneity based on gene expression patterns. Many genes and signaling pathways that regulate the migration and proliferation of EPCs have been identified, but later stages of ENS development, especially steps of neuronal and glial differentiation, remain poorly understood. In recent years, Zebrafish have become increasingly important to test candidate genes for ENS disorders (e.g., from genome-wide association studies), to identify environmental influences on ENS development (e.g., through large-scale drug screens), and to investigate the role the gut microbiota play in ENS development and disease. With its unique advantages as a model organism, Zebrafish will continue to contribute to a better understanding of ENS development, function, and disease. Developmental Dynamics 247:268-278, 2018. © 2017 Wiley Periodicals, Inc.


Assuntos
Sistema Nervoso Entérico , Peixe-Zebra , Animais , Sistema Nervoso Entérico/fisiologia , Sistema Nervoso Entérico/fisiopatologia , Microbioma Gastrointestinal , Regulação da Expressão Gênica no Desenvolvimento , Estudo de Associação Genômica Ampla , Modelos Biológicos , Transdução de Sinais
11.
Development ; 144(8): 1462-1471, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28289134

RESUMO

Zebrafish can regenerate after brain injury, and the regenerative process is driven by resident stem cells. Stem cells are heterogeneous in the vertebrate brain, but the significance of having heterogeneous stem cells in regeneration is not understood. Limited availability of specific stem cells might impair the regeneration of particular cell lineages. We studied regeneration of the adult zebrafish cerebellum, which contains two major stem and progenitor cell types: ventricular zone and neuroepithelial cells. Using conditional lineage tracing we demonstrate that cerebellar regeneration depends on the availability of specific stem cells. Radial glia-like cells are thought to be the predominant stem cell type in homeostasis and after injury. However, we find that radial glia-like cells play a minor role in adult cerebellar neurogenesis and in recovery after injury. Instead, we find that neuroepithelial cells are the predominant stem cell type supporting cerebellar regeneration after injury. Zebrafish are able to regenerate many, but not all, cell types in the cerebellum, which emphasizes the need to understand the contribution of different adult neural stem and progenitor cell subtypes in the vertebrate central nervous system.


Assuntos
Cerebelo/fisiologia , Células-Tronco Neurais/citologia , Células Neuroepiteliais/citologia , Neuroglia/citologia , Regeneração , Peixe-Zebra/fisiologia , Animais , Comportamento Animal , Linhagem da Célula , Cerebelo/patologia , Homeostase , Modelos Biológicos , Células-Tronco Neurais/metabolismo , Células Neuroepiteliais/metabolismo , Neurogênese , Neuroglia/metabolismo
12.
PLoS Biol ; 15(2): e2000689, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28207737

RESUMO

Sustaining a balanced intestinal microbial community is critical for maintaining intestinal health and preventing chronic inflammation. The gut is a highly dynamic environment, subject to periodic waves of peristaltic activity. We hypothesized that this dynamic environment is a prerequisite for a balanced microbial community and that the enteric nervous system (ENS), a chief regulator of physiological processes within the gut, profoundly influences gut microbiota composition. We found that zebrafish lacking an ENS due to a mutation in the Hirschsprung disease gene, sox10, develop microbiota-dependent inflammation that is transmissible between hosts. Profiling microbial communities across a spectrum of inflammatory phenotypes revealed that increased levels of inflammation were linked to an overabundance of pro-inflammatory bacterial lineages and a lack of anti-inflammatory bacterial lineages. Moreover, either administering a representative anti-inflammatory strain or restoring ENS function corrected the pathology. Thus, we demonstrate that the ENS modulates gut microbiota community membership to maintain intestinal health.


Assuntos
Sistema Nervoso Entérico/fisiologia , Microbioma Gastrointestinal , Intestinos/microbiologia , Animais , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Contagem de Células , Contagem de Colônia Microbiana , Disbiose/genética , Disbiose/microbiologia , Disbiose/patologia , Sistema Nervoso Entérico/citologia , Regulação da Expressão Gênica , Inflamação/genética , Inflamação/patologia , Intestinos/patologia , Contagem de Leucócitos , Modelos Biológicos , Mutação/genética , Neutrófilos/metabolismo , Filogenia , Fatores de Transcrição SOXE/metabolismo , Transplante de Células-Tronco , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
13.
Dev Dyn ; 245(11): 1081-1096, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27565577

RESUMO

BACKGROUND: To understand the basis of nervous system development, we must learn how multipotent progenitors generate diverse neuronal and glial lineages. We addressed this issue in the zebrafish enteric nervous system (ENS), a complex neuronal and glial network that regulates essential intestinal functions. Little is currently known about how ENS progenitor subpopulations generate enteric neuronal and glial diversity. RESULTS: We identified temporally and spatially dependent progenitor subpopulations based on coexpression of three genes essential for normal ENS development: phox2bb, sox10, and ret. Our data suggest that combinatorial expression of these genes delineates three major ENS progenitor subpopulations, (1) phox2bb + /ret- /sox10-, (2) phox2bb + /ret + /sox10-, and (3) phox2bb + /ret + /sox10+, that reflect temporal progression of progenitor maturation during migration. We also found that differentiating zebrafish neurons maintain phox2bb and ret expression, and lose sox10 expression. CONCLUSIONS: Our data show that zebrafish enteric progenitors constitute a heterogeneous population at both early and late stages of ENS development and suggest that marker gene expression is indicative of a progenitor's fate. We propose that a progenitor's expression profile reveals its developmental state: "younger" wave front progenitors express all three genes, whereas more mature progenitors behind the wave front selectively lose sox10 and/or ret expression, which may indicate developmental restriction. Developmental Dynamics 245:1081-1096, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Sistema Nervoso Entérico/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Animais , Sistema Nervoso Entérico/citologia , Sistema Nervoso Entérico/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Crista Neural/citologia , Crista Neural/enzimologia , Crista Neural/metabolismo , RNA Mensageiro/genética , Fatores de Transcrição SOXE/genética , Fatores de Transcrição SOXE/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Peixe-Zebra/genética
14.
PLoS Biol ; 14(7): e1002517, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27458727

RESUMO

The gut microbiota is a complex consortium of microorganisms with the ability to influence important aspects of host health and development. Harnessing this "microbial organ" for biomedical applications requires clarifying the degree to which host and bacterial factors act alone or in combination to govern the stability of specific lineages. To address this issue, we combined bacteriological manipulation and light sheet fluorescence microscopy to monitor the dynamics of a defined two-species microbiota within a vertebrate gut. We observed that the interplay between each population and the gut environment produces distinct spatiotemporal patterns. As a consequence, one species dominates while the other experiences sudden drops in abundance that are well fit by a stochastic mathematical model. Modeling revealed that direct bacterial competition could only partially explain the observed phenomena, suggesting that a host factor is also important in shaping the community. We hypothesized the host determinant to be gut motility, and tested this mechanism by measuring colonization in hosts with enteric nervous system dysfunction due to a mutation in the ret locus, which in humans is associated with the intestinal motility disorder known as Hirschsprung disease. In mutant hosts we found reduced gut motility and, confirming our hypothesis, robust coexistence of both bacterial species. This study provides evidence that host-mediated spatial structuring and stochastic perturbation of communities can drive bacterial population dynamics within the gut, and it reveals a new facet of the intestinal host-microbe interface by demonstrating the capacity of the enteric nervous system to influence the microbiota. Ultimately, these findings suggest that therapeutic strategies targeting the intestinal ecosystem should consider the dynamic physical nature of the gut environment.


Assuntos
Microbioma Gastrointestinal/fisiologia , Motilidade Gastrointestinal/fisiologia , Trato Gastrointestinal/microbiologia , Microbiota/fisiologia , Aeromonas veronii/fisiologia , Animais , Antibiose/fisiologia , Larva/genética , Larva/microbiologia , Larva/fisiologia , Microscopia de Fluorescência , Mutação , Dinâmica Populacional , Especificidade da Espécie , Vibrio cholerae/fisiologia , Peixe-Zebra
15.
Artigo em Inglês | MEDLINE | ID: mdl-26747664

RESUMO

Teleost fish have a remarkable neurogenic and regenerative capacity in the adult throughout the rostrocaudal axis of the brain. The distribution of proliferation zones shows a remarkable conservation, even in distantly related teleost species, suggesting a common teleost ground plan of proliferation zones. There are different progenitor populations in the neurogenic niches-progenitors positive for radial glial markers (dorsal telencephalon, hypothalamus) and progenitors with neuroepithelial-like characteristics (ventral telencephalon, optic tectum, cerebellum). Definition of these progenitors has allowed studying their role in normal growth of the adult brain, but also when challenged following a lesion. From these studies, important roles have emerged for intrinsic mechanisms and extrinsic signals controlling the activation of adult neurogenesis that enable regeneration of the adult brain to occur, opening up new perspectives on rekindling regeneration also in the context of the mammalian brain.


Assuntos
Peixes/fisiologia , Neurogênese , Animais , Peixes/classificação , Filogenia
16.
F1000Res ; 3: 308, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25713698

RESUMO

BACKGROUND: The telencephalon shows a remarkable structural diversity among vertebrates. In particular, the everted telencephalon of ray-finned fishes has a markedly different morphology compared to the evaginated telencephalon of all other vertebrates. This difference in development has hampered the comparison between different areas of the pallium of ray-finned fishes and the pallial nuclei of all other vertebrates. Various models of homology between pallial subdivisions in ray-finned fishes and the pallial nuclei in tetrapods have been proposed based on connectional, neurochemical, gene expression and functional data. However, no consensus has been reached so far. In recent years, the analysis of conserved developmental marker genes has assisted the identification of homologies for different parts of the telencephalon among several tetrapod species. RESULTS: We have investigated the gene expression pattern of conserved marker genes in the adult zebrafish ( Danio rerio) pallium to identify pallial subdivisions and their homology to pallial nuclei in tetrapods. Combinatorial expression analysis of ascl1a, eomesa, emx1, emx2, emx3, and Prox1 identifies four main divisions in the adult zebrafish pallium. Within these subdivisions, we propose that Dm is homologous to the pallial amygdala in tetrapods and that the dorsal subdivision of Dl is homologous to part of the hippocampal formation in mouse. We have complemented this analysis be examining the gene expression of emx1, emx2 and emx3 in the zebrafish larval brain. CONCLUSIONS: Based on our gene expression data, we propose a new model of subdivisions in the adult zebrafish pallium and their putative homologies to pallial nuclei in tetrapods. Pallial nuclei control sensory, motor, and cognitive functions, like memory, learning and emotion. The identification of pallial subdivisions in the adult zebrafish and their homologies to pallial nuclei in tetrapods will contribute to the use of the zebrafish system as a model for neurobiological research and human neurodegenerative diseases.

17.
PLoS One ; 8(9): e73384, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24039926

RESUMO

The adult zebrash brain has a remarkable constitutive neurogenic capacity. The regulation and maintenance of its adult neurogenic niches are poorly understood. In mammals, Notch signaling is involved in stem cell maintenance both in embryonic and adult CNS. To better understand how Notch signaling is involved in stem cell maintenance during adult neurogenesis in zebrafish we analysed Notch receptor expression in five neurogenic zones of the adult zebrafish brain. Combining proliferation and glial markers we identified several subsets of Notch receptor expressing cells. We found that 90 [Formula: see text] of proliferating radial glia express notch1a, notch1b and notch3. In contrast, the proliferating non-glial populations of the dorsal telencephalon and hypothalamus rarely express notch3 and about half express notch1a/1b. In the non-proliferating radial glia notch3 is the predominant receptor throughout the brain. In the ventral telencephalon and in the mitotic area of the optic tectum, where cells have neuroepithelial properties, notch1a/1b/3 are expressed in most proliferating cells. However, in the cerebellar niche, although progenitors also have neuroepithelial properties, only notch1a/1b are expressed in a high number of PCNA [Formula: see text] cells. In this region notch3 expression is mostly in Bergmann glia and at low levels in few PCNA [Formula: see text] cells. Additionally, we found that in the proliferation zone of the ventral telencephalon, Notch receptors display an apical high to basal low gradient of expression. Notch receptors are also expressed in subpopulations of oligodendrocytes, neurons and endothelial cells. We suggest that the partial regional heterogeneity observed for Notch expression in progenitor cells might be related to the cellular diversity present in each of these neurogenic niches.


Assuntos
Encéfalo/metabolismo , Proteínas de Homeodomínio/genética , Proteínas do Tecido Nervoso/genética , Receptor Notch1/genética , Receptores Notch/genética , Proteínas de Peixe-Zebra/genética , Animais , Encéfalo/citologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/ultraestrutura , Proliferação de Células , Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Neuroglia/citologia , Neuroglia/metabolismo , Receptor Notch3 , Peixe-Zebra
18.
Zebrafish ; 10(2): 147-53, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23297729

RESUMO

To characterize fluorescent enteric neurons labeled for expression of cytoplasmic markers in zebrafish mutants, we developed a new MATLAB-based program that can be trained by user input. We used the program to count enteric neurons and to analyze co-expression of the neuronal marker, Elavl, and the neuronal subtype marker, serotonin, in 3D confocal image stacks of dissected whole-mount zebrafish intestines. We quantified the entire population of enteric neurons and the serotonergic subpopulation in specific regions of the intestines of gutwrencher mutant and wild-type sibling larvae. We show a marked decrease in enteric neurons in gutwrencher mutants that is more severe at the caudal end of the intestine. We also show that gutwrencher mutants have the same number of serotonin-positive enteroendocrine cells in the intestine as wild types.


Assuntos
Contagem de Células/métodos , Sistema Nervoso Entérico/citologia , Perfilação da Expressão Gênica/métodos , Intestinos/citologia , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/anatomia & histologia , Animais , Biomarcadores/metabolismo , Marcadores Genéticos , Processamento de Imagem Assistida por Computador , Larva/citologia , Larva/genética , Larva/crescimento & desenvolvimento , Neurônios Serotoninérgicos/metabolismo , Serotonina/genética , Serotonina/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética
19.
J Comp Neurol ; 520(3): 633-55, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21858823

RESUMO

The morphology of the telencephalon displays great diversity among different vertebrate lineages. Particularly the everted telencephalon of ray-finned fishes shows a noticeably different morphology from the evaginated telencephalon of nonray-finned fishes and other vertebrates. This makes the comparison between the different parts of the telencephalon of ray-finned fishes and other vertebrates difficult. Based on neuroanatomical, neurochemical, and connectional data no consensus on the subdivisions of the adult telencephalon of ray-finned fishes and their relation to nuclei in the telencephalon of other vertebrates has been reached yet. For tetrapods, comparative expression pattern analysis of homologous developmental genes has been a successful approach to clarify homologies between different parts of the telencephalon. In the larval zebrafish, subdivisions of the subpallium have been proposed using conserved developmental gene expression. In this study, we investigate the subdivisions of the adult zebrafish telencephalon by analyzing the expression pattern of conserved molecular marker genes. We identify the boundary between the pallium and subpallium based on the complementary expression of dlx2a, dlx5a in the subpallium and tbr1, neurod in the pallium. Furthermore, combinatorial expression of Isl, nkx2.1b, lhx1b, tbr1, eomesa, emx1, emx2, and emx3 identifies striatal-like, pallidal-like, and septal-like subdivisions within the subpallium. In contrast to previous models, we propose that the striatum and pallidum are stretched along the rostrocaudal axis of the telencephalon. Further, the septal nuclei derive from both the pallium and subpallium. On this basis, we present a new model for the subdivisions of the subpallium in teleost fish.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Globo Pálido/anatomia & histologia , Globo Pálido/química , Telencéfalo/anatomia & histologia , Telencéfalo/química , Proteínas de Peixe-Zebra/biossíntese , Proteínas de Peixe-Zebra/genética , Envelhecimento/genética , Envelhecimento/metabolismo , Envelhecimento/fisiologia , Animais , Marcadores Genéticos/genética , Globo Pálido/metabolismo , Telencéfalo/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/química
20.
Glia ; 58(11): 1345-63, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-20607866

RESUMO

Adult telencephalic neurogenesis is a conserved trait of all vertebrates studied. It has been investigated in detail in rodents, but very little is known about the composition of neurogenic niches and the cellular nature of progenitors in nonmammalian vertebrates. To understand the components of the progenitor zones in the adult zebrafish telencephalon and the link between glial characteristics and progenitor state, we examined whether canonical glial markers are colocalized with proliferation markers. In the adult zebrafish telencephalon, we identify heterogeneous progenitors that reside in two distinct glial domains. We find that the glial composition of the progenitor zone is linked to its proliferative behavior. Analyzing both fast-cycling proliferating cells as well as slowly cycling progenitors, we find four distinct progenitor types characterized by differential expression of glial markers. Importantly, a significant proportion of progenitors do not display typical radial glia characteristics. By blocking or activating Fgf signaling by misexpression of a dominant negative Fgf-receptor 1 or Fgf8a, respectively, we find that ventral and dorsal progenitors in the telencephalon also differ in their requirement for Fgf signaling. Together with data on the expression of Fgf signaling components in the ventricular zone of the telencephalon, this suggests that Fgf signaling directly regulates proliferation of specific subsets of adult telencephalic progenitors in vivo. Taken together our results show that adult neural progenitor cells are heterogeneous with their respect to distribution into two distinct glial domains and their dependence upon Fgf signaling as a proliferative cue in the zebrafish telencephalon.


Assuntos
Fatores de Crescimento de Fibroblastos/fisiologia , Neuroglia/metabolismo , Neurônios/metabolismo , Células-Tronco/metabolismo , Telencéfalo/metabolismo , Animais , Biomarcadores/análise , Biomarcadores/metabolismo , Diferenciação Celular/fisiologia , Movimento Celular/fisiologia , Proliferação de Células , Senescência Celular/fisiologia , Sinais (Psicologia) , Proteínas do Tecido Nervoso/análise , Proteínas do Tecido Nervoso/metabolismo , Neurogênese/fisiologia , Neuroglia/citologia , Neurônios/citologia , Receptores de Fatores de Crescimento de Fibroblastos/genética , Transdução de Sinais/genética , Especificidade da Espécie , Células-Tronco/citologia , Telencéfalo/citologia , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...