Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pest Manag Sci ; 79(3): 1213-1224, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36414610

RESUMO

BACKGROUND: The wildfire disease on tobacco can seriously hinder plants. Meanwhile, its pathogen, Pseudomonas syringae, can also infect over 200 plants and threat agriculture production. However, the disease usually occurs after summer rains which washes away most copper (Cu)-based bactericides, allowing the disease to invade. Therefore, we fabricate a new nanogel with high disease control and anti-erosion ability and study the effects of the reductant on the performance of the copper oxide nanoparticle (CuONP) composite nanogel. RESULTS: Polydopamine (PDA) is a polycation for both in situ reduction of CuONP in alginate nanogels and for adjusting the copper ion (Cu2+ ) releasing rate in this work. The composite nanogel fabricated by PDA (PDA-CuONP@ALGNP@CTAC) had a higher Cu2+ releasing rate, damaging the pathogen membrane more efficiently, allowing for better disease control and plant growth promotion when compared to sodium borohydride (SBH)-fabricated nanogel (SBH-CuONP@ALGNP@CTAC) or the commercial bactericide, thiodiazole copper. The PDA-CuONP@ALGNP@CTAC had a high anti-erosion ability and could remain adhered to the leaf surface even after five rain event simulations. CONCLUSION: The addition of polycations (like PDA) into CuONP composite nanogel could increase the Cu2+ releasing rate, resulting in improved disease management when compared to SBH-CuONP@ALGNP@CTAC or thiodiazole copper. The PDA containing gel had an improved anti-erosion ability and water resistance. This new composite nanogel has a high potential for wildfire disease control, improving agricultural production. © 2022 Society of Chemical Industry.


Assuntos
Cobre , Nanopartículas , Nanogéis , Nicotiana , Alginatos , Pseudomonas syringae , Plantas
2.
Int J Biol Macromol ; 223(Pt A): 1208-1222, 2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36375663

RESUMO

Although ε-poly-l-lysine (ε-PL) has a good potential as a green fungicide, high concentration is usually required during its controlling of plant disease. On the other hand, same problems also appeared in the study of CuONP based nano pesticides. In this manuscript, a new composite alginate nanogel (ALGNP) that containing CuONP and ε-PL was fabricated via in situ reduction of CuONP in nanogel and ε-PL surface coating. Based on the chelation of amide bond of ε-PL and Cu2+ released by CuONP, the synergy effect between Cu2+ and ε-PL layer of the nanogel make the nanogel (CuONP@ALGNP@PL) performed high anti-fungal activity under low Cu2+ and ε-PL concentration (Cu concentration was 40.09 µg/mL, ε-PL concentration was 11.90 µg/mL). Study showed that the nanogel could more significantly destroy the fungal cell membrane than CuONP@ALGNP and ALGNP@PL, also better than commercial fungicide CuCaSO4 (Cu concentration was 120 µg/mL). Furthermore, CuONP@ALGNP@PL could seriously affect the spore production, spore germination rate and bud tube elongation length of Alternaria alternate. Moreover, CuONP@ALGNP@PL also inhibit Botrytis cinerea, Phytophthora, Thanatephorus cucumeris and Fusarium graminearum. These results showed that composite of CuONP and ε-PL based on nanogel can decrease the raw materials application amount, and achieve a high disease controlling ability, which provides a new perspective for preventing fungal diseases.


Assuntos
Fungicidas Industriais , Phytophthora , Polilisina/farmacologia , Polilisina/química , Alternaria , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Fungicidas Industriais/farmacologia
3.
J Hazard Mater ; 417: 126121, 2021 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-34020348

RESUMO

To understand the potential of urea-synthesized g-C3N4 nanosheets (0.125-1 mg/mL) as antimicrobial agents against oomycetes, an investigation of the interaction mechanism between g-C3N4 nanosheets and Phytophthora capsici was conducted. Transcription analysis showed that after being exposed to g-C3N4 nanosheets for 1 h, P. capsici triggered a sharp upregulation of antioxidant activities and structural constituents and a downregulation of metabolic pathways, including ATP generation, autophagy disruption, membrane system disorders and other complex adaptive processes. All the life stages of P. capsici, including mycelial growth, sporangium formation, zoospore numbers and zoospore germination were remarkably inhibited and even injured. A mutual mechanism is proposed in this work: ROS stress upon exposure to visible irradiation and, combined with their sharp nanosheet structure, cause perturbations of the cell membrane and induce damage to the ultrastructure of mycelial growth, sporangium and zoospores. Given that the antimicrobial action of g-C3N4 nanosheets were derived from the damage throughout the duration of treatment and was not limited to a single target, these complex mechanisms could favor the avoidance of drug resistance and benefit other oomycetes management. More importantly, in addition to restraining P. capsici infection in host plants, g-C3N4 nanosheets promoted pepper plant growth. Hence, g-C3N4 nanosheets have potential as a new non-metal antimicrobial agent to control oomycotal disease in crops.


Assuntos
Anti-Infecciosos , Phytophthora , Antibacterianos , Anti-Infecciosos/farmacologia , Plantas , Verduras
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA