Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 15(19): 5267-5275, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38721991

RESUMO

Tin-based perovskite solar cells (Sn-PSCs) without toxic lead ions outperform other types of lead-free PSCs in terms of photovoltaic performance. To avoid the oxidation of Sn2+ cations and the formation of vacancy defects, most reports involve the addition of SnF2 to the perovskite precursor solution, but hybrid tin halide (Sn-PVK) films still suffer from poor crystallinity and stability. In this work, we used an alternative additive of tin trifluoromethanesulfonate (Sn(OTF)2). Compared to SnF2, the solubility of Sn(OTF)2 in the precursor solution is greatly improved, and the crystal nucleation process is delayed, resulting in the enhancement of crystal growth. The coordination ability of the OTF- anions suppresses the oxidation of Sn2+ cations, which promotes the stability of Sn-PVK films. By replacing the conventional additive of SnF2 with Sn(OTF)2, the device achieves an increase in power conversion efficiency from 7.96% to 10.3%, while the stability of the devices is improved simultaneously.

2.
Rev Sci Instrum ; 94(8)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38065189

RESUMO

The measurements of temperature directly influence the reasonability of experiments at high pressure and high temperature. In this article, we proposed a new integration design, the built-in thermocouple, for in situ temperature measurements in high-pressure-high-temperature experiments by fusing the characteristics of thermocouples and diamond anvil cells together. By integrating an S-type thermocouple inside the gasket of a diamond anvil cell, we successfully measured the temperature of the sample straight inside the pressure chamber at high pressure and high temperature. The setup underwent multiple experimental tests using internal and external heating techniques, the results of which revealed its capability to directly characterize the temperature of the sample with comparable accuracy and reliability to that of the typical external thermocouple setup. The proposed setup has also resolved the issue of the discrepancy of temperatures inside and outside the sample chamber and enormously expedited the temperature measurements by significantly reducing the response time of the thermocouple. In conclusion, the built-in thermocouple is a promising approach toward high-efficiency, in situ temperature measurements under extreme conditions.

3.
Rev Sci Instrum ; 94(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38085055

RESUMO

In high-pressure experimental methods, sample heating in the pressure chamber of a diamond anvil cell is an important topic, and numerous efforts have been made to improve and develop new technologies. In this paper, we propose a new type of internal resistance heating technique, the composite heating gasket, prepared by integrating an annular heater into the sample chamber for direct heating of the sample. As the effective heating area covers the entire pressure chamber wall, a relatively quasi-uniform temperature field is formed within the sample chamber. At the same time, the integration design reduces the risk of diamond oxidation and enables direct measurement of the spectroscopic properties of samples at high temperatures. The preparation of the composite heating gasket is simple and repeatable, and its heating performance is stable at temperatures above 1400 K. When the sample diameter is 210 µm and no thermal insulation is used, the diameter of the temperature zone in which the temperature difference is less than 10 and 20 K exceeds 120 and 170 µm, respectively. The composite heating gasket represents a significant advancement in providing a uniform temperature field for in situ measurements with diamond anvil cells at high pressure and temperature.

4.
FASEB J ; 37(12): e23295, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37984844

RESUMO

C-natriuretic peptide (CNP) is the central regulator of oocyte meiosis progression, thus coordinating synchronization of oocyte nuclear-cytoplasmic maturation. However, whether CNP can independently regulate cytoplasmic maturation has been long overlooked. Mitochondrial DNA (mtDNA) accumulation is the hallmark event of cytoplasmic maturation, but the mechanism underlying oocyte mtDNA replication remains largely elusive. Herein, we report that CNP can directly stimulate oocyte mtDNA replication at GV stage, and deficiency of follicular CNP may contribute largely to lower mtDNA copy number in in vitro matured oocytes. The mechanistic study showed that cAMP-PKA-CREB1 signaling cascade underlies the regulatory role of CNP in stimulating mtDNA replication and upregulating related genes. Of interest, we also report that CNP-NPR2 signaling is inhibited in aging follicles, and this inhibition is implicated in lower mtDNA copy number in oocytes from aging females. Together, our study provides the first direct functional link between follicular CNP and oocyte mtDNA replication, and identifies its involvement in aging-associated mtDNA loss in oocytes. These findings, not only update the current knowledge of the functions of CNP in coordinating oocyte maturation but also present a promising strategy for improving in vitro fertilization outcomes of aging females.


Assuntos
DNA Mitocondrial , Técnicas de Maturação in Vitro de Oócitos , Feminino , Humanos , DNA Mitocondrial/genética , Peptídeo Natriurético Tipo C/genética , Peptídeo Natriurético Tipo C/farmacologia , Oócitos/fisiologia , Meiose , Peptídeos Natriuréticos/genética , Vasodilatadores
5.
ACS Nano ; 17(8): 7335-7351, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37036121

RESUMO

Clinical and experimental evidence confirmed bacterial infiltration in a variety of tumors, which is related to the progression and therapeutic effects of the tumors. Although the administration of antibiotics inhibits the growth of bacteria inside the tumor, systemic distribution of antibiotics induces an imbalance of other microbiomes in the body, which in turn leads to the development of new diseases. To address this clinical challenge, we nanonized an antibiotic in this study. Metronidazole, an antibiotic against broad anaerobes, was linked to fluorouridine to form an amphiphilic small molecule, metronidazole-fluorouridine, which further autoassembled as metronidazole-fluorouridine nanoparticles (MTI-FDU) in a hydrophilic solution. The disulfide bond in the linker cleaves in response to high levels of glutathione (GSH) in the tumor microenvironment. The synergistic antitumor effect of MTI-FDU was observed in two animal models of gut cancer with intratumoral bacteria. Analysis revealed that metronidazole delivered by nanoparticles attacked bacteria inside the tumor, while it had minimal effect on gut microbial homeostasis. Further experiments at the cellular and molecular levels disclosed that MTI-FDU shaped the tumor immune microenvironment through clearance of bacteria and bacterial products. In conclusion, we achieved a synergistic antitumor effect by a dual target of both the intratumoral microbiome and tumor cells. Antibiotic-composed nanoparticles have a clinical advantage in the treatment of tumors with bacteria infiltration, which kill pro-tumor bacteria efficiently as well as keep a balanced microbiota of the patient.


Assuntos
Microbiota , Nanopartículas , Neoplasias , Animais , Metronidazol/farmacologia , Metronidazol/uso terapêutico , Antibacterianos/farmacologia , Neoplasias/tratamento farmacológico , Nanopartículas/química , Bactérias , Microambiente Tumoral
6.
Front Chem ; 11: 958002, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36846857

RESUMO

Marine natural product (MNP) entity property information is the basis of marine drug development, and this entity property information can be obtained from the original literature. However, the traditional methods require several manual annotations, the accuracy of the model is low and slow, and the problem of inconsistent lexical contexts cannot be solved well. In order to solve the aforementioned problems, this study proposes a named entity recognition method based on the attention mechanism, inflated convolutional neural network (IDCNN), and conditional random field (CRF), combining the attention mechanism that can use the lexicality of words to make attention-weighted mentions of the extracted features, the ability of the inflated convolutional neural network to parallelize operations and long- and short-term memory, and the excellent learning ability. A named entity recognition algorithm model is developed for the automatic recognition of entity information in the MNP domain literature. Experiments demonstrate that the proposed model can properly identify entity information from the unstructured chapter-level literature and outperform the control model in several metrics. In addition, we construct an unstructured text dataset related to MNPs from an open-source dataset, which can be used for the research and development of resource scarcity scenarios.

7.
Biomed Res Int ; 2022: 3510423, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36046440

RESUMO

Purpose: Aurantiamide acetate (AA) is a dipeptide derivative with complex pharmacological activities and remarkable effects on preventing and treating various diseases. In the current study, we aimed to investigate whether AA can exert protective effects in a mouse model of ALI induced by LPS. Materials and Methods: In this model, mice were given intranasal LPS for 3 days prior to receiving AA (2.5, 5, and 10 mg/kg) via oral gavage. An assessment of histopathological changes was performed by hematoxylin and eosin (HE). Proinflammatory cytokines were detected in bronchoalveolar lavage fluids (BALFs) by enzyme-linked immunosorbent assays (ELISAs). The effects of AA on protein expression of NF-κB and PI3K/AKT signaling pathways were determined by Western blot. In addition, lung wet/dry (W/D) weight ratio, myeloperoxidase (MPO) activity, cell counts, and protein content were also measured. Results: According to results, AA pretreatment significantly reduced lung pathological changes, W/D ratio, MPO activity, and protein content. Additionally, AA resulted in a significant reduction in the number of total cells, neutrophils, and proinflammatory cytokines in the BALF after LPS stimulation. The subsequent study revealed that pretreatment with AA dose dependently suppressed LPS-induced activation of NF-κB as well as PI3K/AKT phosphorylation. Conclusion: The results indicated that the AA had a protective effect on LPS-induced ALI in mice and could be a potential drug for ALI.


Assuntos
Lesão Pulmonar Aguda , Pneumonia , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Animais , Líquido da Lavagem Broncoalveolar/química , Citocinas/metabolismo , Dipeptídeos/farmacologia , Lipopolissacarídeos/efeitos adversos , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Pneumonia/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo
8.
Drug Deliv ; 29(1): 2805-2814, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36047245

RESUMO

Platelets are multifunctional effectors of inflammatory responses and inseparable from the occurrence and development of various inflammatory diseases. The platelet membrane (PM) is integrated onto the surface of a nano-drug delivery system to form the PM-cloaked nanoparticles (PM@NPs), which can increase the biocompatibility of the nano-drug delivery system and mitigate adverse drug reactions. Owing to the strong affinity of immune regulation and adhesion-related antigens on the surface of PM to the focal sites of inflammatory diseases, which endows PM@NPs with the potential to actively target lesions and improve the therapeutic efficacy of drugs for inflammatory diseases. Based on latest developments in PM biomimetic technique and nanomedicine for the treatment of inflammatory diseases, this paper mainly elaborates three aspects: advantages of PM@NPs, experimental foundation of PM biomimetic nanotechnology, and applications of PM@NPs to the treatment of inflammatory diseases. The aim is to provide reference for the development and application of PM@NPs and novel insights into the treatment of inflammatory diseases.


Assuntos
Nanopartículas , Biomimética/métodos , Sistemas de Liberação de Medicamentos/métodos , Nanomedicina/métodos , Nanotecnologia
9.
Nat Commun ; 13(1): 5234, 2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36068224

RESUMO

The development of organic solid-state luminescent materials, especially those sensitive to aggregation microenvironment, is critical for their applications in devices such as pressure-sensitive elements, sensors, and photoelectric devices. However, it still faces certain challenges and a deep understanding of the corresponding internal mechanisms is required. Here, we put forward an unconventional strategy to explore the pressure-induced evolution of the aggregation microenvironment, involving changes in molecular conformation, stacking mode, and intermolecular interaction, by monitoring the emission under multiple excitation channels based on a luminogen with aggregation-induced emission characteristics of di(p-methoxylphenyl)dibenzofulvene. Under three excitation wavelengths, the distinct emission behaviors have been interestingly observed to reveal the pressure-induced structural evolution, well consistent with the results from ultraviolet-visible absorption, high-pressure angle-dispersive X-ray diffraction, and infrared studies, which have rarely been reported before. This finding provides important insights into the design of organic solid luminescent materials and greatly promotes the development of stimulus-responsive luminescent materials.

10.
J Phys Condens Matter ; 34(43)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-35973420

RESUMO

Impedance spectroscopy (IS) is an indispensable method of exploring electrical properties of materials. In this review, we provide an overview on the specific applications of IS measurement in the investigations of various electrical properties of materials under high pressure, including electric conduction in bulk and grain boundary, dielectric properties, ionic conduction, and electrostrictive effect. Related studies are summarized to demonstrate the method of analyzing different electrical transport processes with various designed equivalent circuits of IS and reveal some interesting phenomena of electrical properties of materials under high pressure.

11.
Phys Chem Chem Phys ; 23(47): 26829-26836, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34817490

RESUMO

In situ impedance measurement, resistivity measurements and first-principles calculations have been performed to investigate the effect of high pressure (up to 30.2 GPa) on the metallization and dielectric properties of GaP. It is found that the carrier transport process changes from mixed grain and grain boundary conduction to pure grain conduction at 5.8 GPa, and due to pressure-induced structural phase transition, the resistance drops drastically by three orders of magnitude at 25.5 GPa. Temperature dependence of resistivity measurements and band structure calculations suggest the occurrence of a semiconductor-metal transition. Combining differential charge density and dielectric analysis, it is observed that the electron localization is weakened, which leads to increased polarization and larger relative permittivity in the zb structure. After the phase transition, both the polarization and the relative permittivity decrease. Pressure increases the complex dielectric constant and dielectric loss factor, due to the increase in relaxation polarization and the scattering effect of carriers. Moreover, by comparing the high-pressure behavior of GaP, GaAs and GaSb, the changes in the electronic structure and electric transport process caused by the phase transition can be understood, which can enable us to better understand the metallization behavior and dielectric properties of Ga-based III-V family semiconductors under pressure, and stimulate the design and modification of other related group III-V semiconductors for optoelectronic devices and sensors.

12.
Pharm Dev Technol ; 26(10): 1073-1078, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34543167

RESUMO

In this study, oridonin-loaded long-circulating liposomes (LC-lipo@ORI) were prepared with the ethanol injection method. Its physicochemical properties and the morphology were characterized, and its stability and release profiles were evaluated. Furthermore, its antitumor effects were studied using two in vitro cell models of colon cancer and two tumor-bearing models in nude mice. The prepared LC-lipo@ORI was quasi-spherical, with a mean particle size of 109.55 ± 2.30 nm. The zeta potential was -1.38 ± 0.21 mV, the encapsulation efficiency was 85.79%±3.25%, and the drug loading was 5.87%±0.21%. In vitro release results showed that the cumulative release rate of LC-lipo@ORI at 12 h was 63.83%. However, ORI dispersion was almost completely released after 12 h. In vitro cytotoxicity results showed that, the inhibiting effects of LC-lipo@ORI on the proliferation of two types of colon cancer cells were apparently higher than those of ORI dispersion, whereas those of the blank carrier were not noticeable. In vivo studies confirmed that, the encapsulation of LC-lipo enhanced the inhibitory effects of ORI on tumor growth. These results indicated that LC-lipo@ORI a promising formulations for colon cancer treatment.


Assuntos
Neoplasias do Colo , Diterpenos do Tipo Caurano , Animais , Neoplasias do Colo/tratamento farmacológico , Diterpenos do Tipo Caurano/farmacologia , Lipossomos , Camundongos , Camundongos Nus , Tamanho da Partícula
13.
Biomed Res Int ; 2021: 5543185, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34258266

RESUMO

Acute lung injury (ALI) is a life-threatening clinical syndrome with high morbidity and mortality. The main pathological features of ALI are increased alveolar-capillary membrane permeability, edema, uncontrolled migration of neutrophils to the lungs, and diffuse alveolar damage, resulting in acute hypoxemic respiratory failure. Glucocorticoids, aspirin, and other anti-inflammatory drugs are commonly used to treat ALI. Respiratory supports, such as a ventilator, are used to alleviate hypoxemia. Many treatment methods are available, but they cannot significantly ameliorate the quality of life of patients with ALI and reduce mortality rates. Herbal active ingredients, such as flavonoids, terpenoids, saponins, alkaloids, and quinonoids, exhibit advantages for ALI prevention and treatment, but the underlying mechanism needs further study. This paper summarizes the role of herbal active ingredients in anti-ALI therapy and progresses in the understanding of their mechanisms. The work also provides some references and insights for the discovery and development of novel drugs for ALI prevention and treatment.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/prevenção & controle , Compostos Fitoquímicos/uso terapêutico , Humanos , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia
14.
Inorg Chem ; 60(11): 7857-7864, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34015921

RESUMO

Transition metal dichalcogenides (TMDs) have attracted wide attention due to their quasi-two-dimensional layered structure and exotic properties. Plenty of efforts have been done to modulate the interlayer stacking manner for novel states. However, as an equally important element in shaping the unique properties of TMDs, the effect of intralayer interaction is rarely revealed. Here, we report a particular case of pressure-tuned re-arrangement of intralayer atoms in distorted 1T-NbTe2, which was demonstrated to be a new type of structural phase transition in TMDs. The structural transition occurs in the pressure range of 16-20 GPa, resulting in a transformation of Nb atomic arrangement from the trimeric to dimeric structure, accompanied by a dramatic collapse of unit cell volume and lattice parameters. Simultaneously, a charge density wave (CDW) was also found to collapse during the phase transition. The strong increase in the critical fluctuations of CDW induces a significant decline in the electronic correlation and a change of charge carrier type from hole to electron in NbTe2. Our finding reveals a new mechanism of structure evolution and expands the field of pressure-induced phase transition.

15.
mSystems ; 6(1)2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33468706

RESUMO

Metagenomic data sets from diverse environments have been growing rapidly. To ensure accessibility and reusability, tools that quickly and informatively correlate new microbiomes with existing ones are in demand. Here, we introduce Microbiome Search Engine 2 (MSE 2), a microbiome database platform for searching query microbiomes in the global metagenome data space based on the taxonomic or functional similarity of a whole microbiome to those in the database. MSE 2 consists of (i) a well-organized and regularly updated microbiome database that currently contains over 250,000 metagenomic shotgun and 16S rRNA gene amplicon samples associated with unified metadata collected from 798 studies, (ii) an enhanced search engine that enables real-time and fast (<0.5 s per query) searches against the entire database for best-matched microbiomes using overall taxonomic or functional profiles, and (iii) a Web-based graphical user interface for user-friendly searching, data browsing, and tutoring. MSE 2 is freely accessible via http://mse.ac.cn For standalone searches of customized microbiome databases, the kernel of the MSE 2 search engine is provided at GitHub (https://github.com/qibebt-bioinfo/meta-storms).IMPORTANCE A search-based strategy is useful for large-scale mining of microbiome data sets, such as a bird's-eye view of the microbiome data space and disease diagnosis via microbiome big data. Here, we introduce Microbiome Search Engine 2 (MSE 2), a microbiome database platform for searching query microbiomes against the existing microbiome data sets on the basis of their similarity in taxonomic structure or functional profile. Key improvements include database extension, data compatibility, a search engine kernel, and a user interface. The new ability to search the microbiome space via functional similarity greatly expands the scope of search-based mining of the microbiome big data.

16.
RSC Adv ; 11(4): 1976-1983, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35424191

RESUMO

Beside the conventional perovskite precursors with lead halides as lead sources, non-halide lead sources provide additional tools for tuning the properties of perovskite layers, and lead acetate is a promising candidate for non-halide lead sources. In this work, we develop the perovskite precursor with a mixed non-halide lead source by partially replacing lead acetate with lead thiocyanate. Scanning electron microscopy and X-ray diffraction measurements indicate that lead thiocyanate additive can remarkably increase the size of perovskite grains and the crystallization of perovskite layers. And the cross-sectional investigation illustrates that the penetration of perovskite materials into TiO2 porous layers also can be improved by the lead thiocyanate additive. As a consequence, the recombination process and charge extraction process of devices are improved. By optimizing the quantity of lead thiocyanate, the power conversion efficiency of devices is increased from 14.0% to 17.2%, and the stability of devices is elevated simultaneously.

17.
Rev Sci Instrum ; 92(12): 123901, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34972468

RESUMO

In general, pressure calibration in diamond anvil cells (DACs) has been achieved by mixing pressure calibration materials (PCMs) with the sample inside the pressure chamber. However, the chemical reactions between the sample and PCMs are sometimes unavoidable at extreme conditions, such as high pressure and high temperature. These undesired reactions will cause pollution, induce changes in physical properties or phase transformations of PCMs, and result in tremendous error of pressure calibration. In this paper, we report a new design of DAC with double coaxial pressure chambers, sample and PCM chambers, to resolve the challenge by isolating the PCM from the sample. Our test results show that the pressure of the two chambers presents interesting relations with the anvil setup. When the geometric parameters of two anvil sets are the same and the difference of chamber diameters is within a certain range (i.e., below 10 µm), the pressure correlation between the two chambers shows little correlation with the pressure transmitting medium before and after its solidification at both room temperature and high temperatures within the experimental condition range (well below 20 GPa and 634 K). In this case, the pressure of the sample chamber can be well calibrated by the pressure of the PCM chamber. This new DAC setup is thus proved to be effective in calibrating the sample pressure below certain conditions while avoiding undesired sample pollution and pressure induced property changes in PCMs under high pressure and high temperature conditions compared with single-chamber DACs.

18.
Phys Chem Chem Phys ; 22(45): 26306-26311, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33175931

RESUMO

The ionic transport properties of solid electrolyte LaF3 were systematically studied under high pressures up to 30.6 GPa with alternate-current impedance spectra measurements and first-principles calculations. From the impedance spectra measurements, LaF3 was found to transform from pure ionic conduction to mixed ionic and electronic conduction at 15.0 GPa, which results from the pressure-induced structural phase transition from a tysonite-type structure to an anti-Cu3Ti-type structure. F- ion migration can be suppressed by pressure, causing a decrease of the ionic conductivity of LaF3. By first-principles calculations, the pressure-dependent diffusion behaviors of the F- ions can be understood. The increased overlap of electron clouds at the interstitial site between rigid La3+ and liquid F- lattices leads to the appearance of electronic conduction in anti-Cu3Ti-type structured LaF3.

19.
Materials (Basel) ; 13(18)2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32942780

RESUMO

The compression of ammonium azide (AA) has been considered to be a promising route for producing high energy-density polynitrogen compounds. So far though, there is no experimental evidence that pure AA can be transformed into polynitrogen materials under high pressure at room temperature. We report here on high pressure (P) and temperature (T) experiments on AA embedded in N2 and on pure AA in the range 0-30 GPa, 300-700 K. The decomposition of AA into N2 and NH3 was observed in liquid N2 around 15 GPa-700 K. For pressures above 20 GPa, our results show that AA in N2 transforms into a new crystalline compound and solid ammonia when heated above 620 K. This compound is stable at room temperature and on decompression down to at least 7.0 GPa. Pure AA also transforms into a new compound at similar P-T conditions, but the product is different. The newly observed phases are studied by Raman spectroscopy and X-ray diffraction and compared to nitrogen and hydronitrogen compounds that have been predicted in the literature. While there is no exact match with any of them, similar vibrational features are found between the product that was obtained in AA + N2 with a polymeric compound of N9H formula.

20.
Database (Oxford) ; 20202020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32754758

RESUMO

ConoMode is a database for complex three-dimensional (3D) structures of conopeptides binding with their target proteins. Conopeptides, a large family of peptides from the venom of marine snails of the Conus genus, have exceptionally diverse sequences, and their high specificity to block ion channels makes them crucial as drug leads and tools for physiological studies. ConoMode is a specialized archive for the collection of 3D coordinate data for the conopeptides and their binding target proteins from published literature and the Protein Data Bank. These 3D structures can be determined using experimental methods such as X-ray crystallography and electron microscopy and computational methods including docking, homology modeling and molecular dynamics simulations. The binding modes for the conopeptides determined using computational modeling must be validated based on experimental data. The 3D coordinate data from ConoMode can be searched, visualized, downloaded and uploaded. Currently, ConoMode manages 19 conopeptide sequences (from 10 Conus species), 15 protein sequences and 37 3D structures. ConoMode utilizes a modern technical framework to provide a good user experience on mobile devices with touch interaction features. Furthermore, the database is fully optimized for unstructured data and flexible data models. Database URL: http://conomode.qnlm.ac/conomode/conomode/index.


Assuntos
Conotoxinas , Caramujo Conus , Bases de Dados de Proteínas , Venenos de Moluscos , Peptídeos , Animais , Conotoxinas/química , Conotoxinas/genética , Conotoxinas/metabolismo , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , Conformação Proteica , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...