Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 122(49): 9403-9411, 2018 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-30388012

RESUMO

Isomerization of molecular systems is ubiquitous in chemistry and biology, and is also important for many applications. Atomistic simulations can help determine the tunable parameters influencing this process. In this paper, we use the Nonadiabatic EXcited state Molecular Dynamics (NEXMD) software to study the photoisomerization of a representative molecule, 4-styrylquinoline (SQ). trans-SQ transforms into dihydrobenzophenanthridine (DHBP) upon irradiation with laser light, with the cis conformer acting as an intermediate. We study how varying three different external stimuli (i.e., apolar versus polar solvent, low versus high photoexcitation energy, and vacuum versus a constant temperature thermostat) affects the trans-to- cis photoisomerization of SQ. Our results show that polarization effects due to implicit solvation and the thermostat play a crucial role in the isomerization process, whereas photoexcitation energy plays a lesser role on the outcome and efficiency. We also show that NEXMD captures the correct energy profile between the ground and first singlet excited state, showing that there are two distinct reaction pathways to the final stable product that vary by the number of photons absorbed, in agreement with experiment. Ultimately, NEXMD proves to be an effective tool for investigating excited state single molecule dynamics subject to various environments and initial conditions.

2.
J Chem Theory Comput ; 14(8): 3955-3966, 2018 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-29874465

RESUMO

Solvation can be modeled implicitly by embedding the solute in a dielectric cavity. This approach models the induced surface charge density at the solute-solvent boundary, giving rise to extra Coulombic interactions. Herein, the Nonadiabatic EXcited-state Molecular Dynamics (NEXMD) software was used to model the photoexcited nonradiative relaxation dynamics in a set of substituted donor-acceptor oligo( p-phenylenevinylene) (PPVO) derivatives in the presence of implicit solvent. Several properties of interest including optical spectra, excited state lifetimes, exciton localization, excited state dipole moments, and structural relaxation are calculated to elucidate dependence of functionalization and solvent polarity on photoinduced nonadiabatic dynamics. Results show that solvation generally affects all these properties, where the magnitude of these effects vary from one system to another depending on donor-acceptor substituents and molecular polarizability. We conclude that implicit solvation can be directly incorporated into nonadiabatic simulations within the NEXMD framework with little computational overhead and that it qualitatively reproduces solvent-dependent effects observed in solution-based spectroscopic experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...