Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 11(5)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37317182

RESUMO

The insect gut is home to an extensive array of microbes that play a crucial role in the digestion and absorption of nutrients, as well as in the protection against pathogenic microorganisms. The variety of these gut microbes is impacted by factors such as age, diet, pesticides, antibiotics, sex, and caste. Increasing evidence indicates that disturbances in the gut microbiota can lead to compromised insect health, and that its diversity has a far-reaching impact on the host's health. In recent years, the use of molecular biology techniques to conduct rapid, qualitative, and quantitative research on the host intestinal microbial diversity has become a major focus, thanks to the advancement of metagenomics and bioinformatics technologies. This paper reviews the main functions, influencing factors, and detection methods of insect gut microbes, in order to provide a reference and theoretical basis for better research utilization of gut microbes and management of harmful insects.

2.
PeerJ ; 11: e15312, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37151290

RESUMO

Background: Trihelix transcription factors play important roles in triggering plant growth and imparting tolerance against biotic and abiotic stresses. However, a systematical analysis of the trihelix transcription factor family under heat and drought stresses in maize has not been reported. Methods: PlantTFDB and TBtools were employed to identify the trihelix domain-containing genes in the maize genome. The heat-regulated transcriptome data for maize were obtained from NCBI to screen differentially expressed ZmTHs genes through statistical analysis. The basic protein sequences, chromosomal localization, and subcellular localization were analyzed using Maize GDB, Expasy, SOMPA, TBtools, and Plant-mPLoc. The conserved motifs, evolutionary relationships, and cis-elements, were analyzed by MEME, MEGA7.0 and PlantCARE software, respectively. The tissue expression patterns of ZmTHs and their expression profiles under heat and drought stress were detected using quantitative real-time PCR (qRT-PCR). Results: A total of 44 trihelix family members were discovered, and members were distributed over 10 chromosomes in the maize genome. A total of 11 genes were identified that were regulated by heat stress; these were unevenly distributed on chromosomes 1, 2, 4, 5, and 10. ZmTHs encoded a total of 16 proteins, all of which were located in the nucleus; however, ZmTH04.1 was also distributed in the chloroplast. The protein length varied from 206 to 725 amino acids; the molecular weight ranged from 22.63 to 76.40 kD; and the theoretical isoelectric point (pI) ranged from 5.24 to 11.2. The protein's secondary structures were mainly found to be random coils and α-helices, with fewer instances of elongation chains and ß-rotations. Phylogenetic relationship analysis showed that these can be divided into five sub-groups. The conserved domain of ZmTHs was GT1 or MyB_DNA-Bind_4. The protein and gene structure of ZmTHs differed greatly among the subfamilies, while the structures within the subfamilies were similar. The promoter of ZmTHs contained abundant tissue-specific expression cis-acting elements and abiotic stress response elements. qRT-PCR analysis showed that ZmTHs expression levels were significantly different in different tissues. Furthermore, the expression of ZmTH08 was dramatically up-regulated by heat stress, while the expression of ZmTH03, ZmTH04, ZmTH05, ZmTH06, ZmTH07, ZmTH09, ZmTH10, and ZmTH11 were down-regulated by heat stress. Upon PEG-simulated drought stress, ZmTH06 was significantly up-regulated, while ZmTH01 and ZmTH07 were down-regulated. Conclusions: We performed a genome-wide, systematic identification and analysis of differentially expressed trihelix genes under heat and drought stresses in maize.


Assuntos
Perfilação da Expressão Gênica , Zea mays , Zea mays/genética , Filogenia , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Estresse Fisiológico/genética
3.
Front Plant Sci ; 13: 1076854, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36714717

RESUMO

Grain sorghum has been a significant contributor to global food security since the prehistoric period and may contribute even more to the security of both food and energy in the future. Globally, precise management techniques are crucial for increasing grain sorghum productivity. In China, with diverse ecological types, variety introduction occasionally occurs across ecological zones. However, few information is available on the effect of ecological type on genotype performance and how plant spacing configuration influences grain yield in various ecological zones. Hence, a series of two-year field experiments were conducted in 2020 and 2021 in four ecological zones of China, from the northeast to the southwest. The experiments included six widely adapted sorghum varieties under six plant spacing configurations (two row spacing modes: equidistant row spacing (60 cm) mode and wide (80 cm)-narrow (40 cm) row spacing mode; three in-row plant spacings: 10 cm, 15 cm, and 20 cm). Our results indicated that ecological type, variety, and plant spacing configuration had a significant effect on sorghum yield. Ecological type contributed the highest proportion to the yield variance (49.8%), followed by variety (8.3%), while plant spacing configuration contributed 1.8%. Sorghum growth duration was highly influenced by the ecological type, accounting for 87.2% of its total variance, whereas plant height was mainly affected by genotype, which contributed 81.6% of the total variance. All test varieties, developed in the south or north, can reach maturity within 94-108 d, just before fall sowing in central China. Generally, sorghum growth duration becomes longer when a variety is introduced from south to north. A late-maturing variety, developed in the spring sowing and late-maturing regions, possibly could not reach maturity in the early-maturing region. The row spacing modes had no significant affect on sorghum yield, but the equal-row spacing mode consistently caused higher yields with only one exception; this might imply that equal-row spacing mode was more advantageous for boosting sorghum yield potential. In contrast, decreasing in-row plant spacing showed significant positive linear associations with sorghum grain yield in most cases. In addition, these results demonstrated that sorghum is a widely adapted crop and enables success in variety introduction across ecological zones.

4.
Ying Yong Sheng Tai Xue Bao ; 26(6): 1751-8, 2015 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-26572028

RESUMO

The effects of plant density on population yield and economic output value in maize and soybean intercropping were studied with the design of the double saturated D-optimal regression. A mathematical model was developed, in which the densities of maize and soybean were independent variables, and population grain yield, dry matter accumulation and economic output value were dependent variables, respectively. The result showed that the plant density significantly affected the population grain yield, dry matter accumulation and economic output value, and the effects of density of maize on population indices were greater than those of density of soybean. Under the low level conditions of density, the population grain yield, dry matter accumulation and economic output value increased with the density of maize and soybean. The maximum population grain yield was 8101.31 kg · hm(-2) the optimized combination of 72023 plant maize · hm(-2) and 99924 plant soybean · hm(-2), while the maximum population dry matter accumulation was 15282.45 kg · hm(-2) with the optimized combination of 75000 plant maize · hm(-2) and 93372 plant soybean · hm(-2), and the maximum population economic output value was 23494.50 Yuan · hm(-2) with the optimized combination of 73758 plant maize · hm(-2) and 87597 plant soybean · hm(-2). The optimum combination of densities of maize and soybean calculated by computer were 58554-71547 plant · hm(-2) for maize and 82217-100303 plant · hm(-2) for soybean in order to obtain grain yield greater than 7500 kg · hm(-2), dry matter accumulation greater than 14250 kg · hm(-2) and economic output value greater 22500 yuan · hm(-2) under the condition of this experiment.


Assuntos
Agricultura/métodos , Glycine max/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento , Biomassa , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...