Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(4): e15291, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37095918

RESUMO

Stress can trigger cardiovascular disease. Both imbalance of autonomic nervous activity and increase of neurohormonal output are core aspects of stress responses and can lead to cardiovascular disease. PC6 as a very important acupoint is used to prevent and treat cardiovascular disease and to improve stress-related activities. We examined the influence of electroacupuncture (EA) at PC6 on stress-induced imbalance of autonomic nervous activity and increase of neurohormonal output. EA at PC6 relieved increased cardiac sympathetic nervous activity and decreased cardiac vagal nervous activity induced by immobilization stress. Also, EA at PC6 reduced immobilization stress-induced increases of plasma norepinephrine (NE) and adrenaline (E) released from sympatho-adrenal-medullary axis. Finally, EA at PC6 reduced immobilization stress-induced increases of corticotropin-releasing hormone (CRH) in paraventricular hypothalamic nucleus and plasma cortisol (CORT) released from hypothalamic-pituitary-adrenal axis. However, EA at tail had no significant effect on the stress-induced autonomic and neuroendocrine responses. The results demonstrate the role of EA at PC6 regulating the autonomic and neuroendocrine responses induced by stress and provide insight into the prevention and treatment of EA at PC6 for stress-induced cardiovascular disease by targeting autonomic and neuroendocrine systems.

2.
Neuropeptides ; 87: 102132, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33636511

RESUMO

Central orexinergic system contributes to the regulation of cardiovascular function. Orexinergic neurons receiving projections of nerve fibers from multiple structures of brain which involved in control and regulation of cardiovascular function locate in hypothalamus, and their axon terminals widely project to various central structures where orexins receptors are expressed. Here, we summarize the present knowledge that describes the influence of central orexinergic system on cardiovascular activity, the relevance of dysfunction in central orexinergic system with hypertension and psychological stress induced cardiovascular reactivity which are serious risk factors for cardiovascular disease and cardiovascular death. We propose that central orexinergic system may be potentially important targets for the prevention of cardiovascular disease and cardiovascular death, and different orexinergic system involved neuronal circuits may be involved in distinct cardiovascular functions. Acupuncture having bidirectional regulatory ability and a much lower incidence of side effects can prevent disease. We review the improvement of acupuncture on hypertension and psychological stress induced cardiovascular reactivity. We think that acupuncture intervenes hypertension and psychological stress induced cardiovascular reactivity to prevent cardiovascular disease and cardiovascular death. We also summarize relation between acupuncture and central orexinergic system. We propose a hypothesis that acupuncture improve hypertension and psychological stress induced cardiovascular reactivity through regulating central orexinergic system. The knowledge is beneficial for the development of potential therapeutic targets and methods to prevent cardiovascular disease and cardiovascular death.


Assuntos
Terapia por Acupuntura , Tronco Encefálico/fisiologia , Fenômenos Fisiológicos Cardiovasculares , Fatores de Risco de Doenças Cardíacas , Hipotálamo/fisiologia , Sistema Límbico/fisiologia , Receptores de Orexina/fisiologia , Orexinas/fisiologia , Animais , Doenças Cardiovasculares/fisiopatologia , Doenças Cardiovasculares/prevenção & controle , Humanos , Hipertensão/terapia , Modelos Cardiovasculares , Fibras Nervosas/fisiologia , Vias Neurais/fisiologia , Ratos , Ratos Mutantes , Risco , Medula Espinal/fisiologia , Estresse Psicológico/terapia
3.
Neuropeptides ; 75: 18-24, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30922523

RESUMO

The corticotropin-releasing factor (CRF) related peptides system has widespread distributions in central nervous system, to perform many physiological and pathophysiological functions, including cardiovascular functions. A complex connection exists between the central CRF related peptides system and cardiovascular system. There are multiple pathways and mechanisms through which the central CRF related peptides system influences cardiovascular functions. A dysfunction in the central CRF related peptides system may lead to a wide range of alterations in cardiovascular functions. Though there are difficulties or limitations in establishing exact modulatory roles of the central CRF related peptides system in cardiovascular functions. The central CRF related peptides system as target to prevent cardiovascular diseases is being pursued with increasing interest. In this review, we summarize recent understanding on cardiovascular functions of the CRF related peptides system in limbic forebrain, hypothalamus and brain stem structures, discuss mechanisms of the central CRF related peptides system in control of cardiovascular functions, and suggest that the central CRF related peptides system may be a potent candidate for prevention of cardiovascular diseases.


Assuntos
Sistema Cardiovascular/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Animais , Fenômenos Fisiológicos Cardiovasculares , Humanos
4.
Neurosci Bull ; 33(4): 365-372, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28389870

RESUMO

Orexin, released from the hypothalamus, has been implicated in various basic non-somatic functions including feeding, the sleep-wakefulness cycle, emotion, and cognition. However, the role of orexin in somatic motor control is still little known. Here, using whole-cell patch clamp recording and immunostaining, we investigated the effect and the underlying receptor mechanism of orexin-A on neurons in the globus pallidus internus (GPi), a critical structure in the basal ganglia and an effective target for deep brain stimulation therapy. Our results showed that orexin-A induced direct postsynaptic excitation of GPi neurons in a concentration-dependent manner. The orexin-A-induced excitation was mediated via co-activation of both OX1 and OX2 receptors. Furthermore, the immunostaining results showed that OX1 and OX2 receptors were co-localized in the same GPi neurons. These results suggest that the central orexinergic system actively modulates the motor functions of the basal ganglia via direct innervation on GPi neurons and presumably participates in somatic-non-somatic integration.


Assuntos
Globo Pálido/citologia , Interneurônios/efeitos dos fármacos , Receptores de Orexina/metabolismo , Orexinas/farmacologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Relação Dose-Resposta a Droga , Estimulação Elétrica , Antagonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Técnicas In Vitro , Isoquinolinas/farmacologia , Masculino , Receptores de Orexina/agonistas , Técnicas de Patch-Clamp , Piridazinas/farmacologia , Piridinas/farmacologia , Quinoxalinas/farmacologia , Ratos , Ratos Sprague-Dawley , Bloqueadores dos Canais de Sódio/farmacologia , Tetrodotoxina/farmacologia
5.
Brain Struct Funct ; 222(2): 957-971, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27342113

RESUMO

The cerebellum, a hindbrain motor center, also participates in regulating nonsomatic visceral activities such as feeding control. However, the underlying neural mechanism is largely unknown. Here, we investigate whether the cerebellar medial nucleus (MN), one of the final outputs of the cerebellum, could directly project to and modulate the feeding-related neurons in the ventromedial hypothalamic nucleus (VMN), which has been traditionally implicated in feeding behavior, energy balance, and body weight regulation. The retrograde tracing results show that both GABAergic and glutamatergic projection neurons in the cerebellar MN send direct projections to the VMN. Electrical stimulation of cerebellar MN elicits an inhibitory, excitatory or biphasic response of VMN neurons. Interestingly, the VMN neurons modulated by cerebellar MN afferents not only receive phasic and tonic inputs from the gastric vagal nerves, but also are sensitive to peripheral glycemia and ghrelin signals. Moreover, a summation of inputs from the cerebellar MN and gastric vagal afferents occurs on single glycemia/ghrelin-sensitive neurons in the VMN, and the immunostaining result show that the axons from the cerebellar MN and the projections from the nucleus tractus solitarius, which conveys the gastric vagal inputs to hypothalamus, converge on single VMN glycemia/ghrelin-sensitive neurons. These results demonstrate that the somatic information forwarded by the cerebellar MN, together with the feeding signals from periphery, converge onto single VMN neurons, suggesting that a somatic-visceral integration related to feeding may occur in the VMN and the cerebellum may actively participate in the feeding regulation through the direct cerebellar MN-VMN projections.


Assuntos
Núcleos Cerebelares/citologia , Núcleos Cerebelares/fisiologia , Comportamento Alimentar/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Núcleo Hipotalâmico Ventromedial/citologia , Núcleo Hipotalâmico Ventromedial/fisiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Núcleos Cerebelares/metabolismo , Estimulação Elétrica , Feminino , Neurônios GABAérgicos/citologia , Grelina/administração & dosagem , Glucose/administração & dosagem , Ácido Glutâmico/metabolismo , Masculino , Técnicas de Rastreamento Neuroanatômico , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Nervo Vago/fisiologia , Núcleo Hipotalâmico Ventromedial/efeitos dos fármacos , Núcleo Hipotalâmico Ventromedial/metabolismo
6.
Sci Rep ; 6: 20206, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26831220

RESUMO

Corticotropin releasing factor (CRF), a peptide hormone involved in the stress response, holds a key position in cardiovascular regulation. Here, we report that the central effect of CRF on cardiovascular activities is mediated by the posterior hypothalamic nucleus (PH), an important structure responsible for stress-induced cardiovascular changes. Our present results demonstrate that CRF directly excites PH neurons via two CRF receptors, CRFR1 and CRFR2, and consequently increases heart rate (HR) rather than the mean arterial pressure (MAP) and renal sympathetic nerve activity (RSNA). Bilateral vagotomy does not influence the tachycardia response to microinjection of CRF into the PH, while ß adrenergic receptor antagonist propranolol almost totally abolishes the tachycardia. Furthermore, microinjecting CRF into the PH primarily increases neuronal activity of the rostral ventrolateral medulla (RVLM) and rostral ventromedial medulla (RVMM), but does not influence that of the dorsal motor nucleus of the vagus nerve (DMNV). These findings suggest that the PH is a critical target for central CRF system in regulation of cardiac activity and the PH-RVLM/RVMM-cardiac sympathetic nerve pathways, rather than PH-DMNV-vagus pathway, may contribute to the CRF-induced tachycardia.


Assuntos
Hormônio Liberador da Corticotropina/metabolismo , Hipotálamo Posterior/citologia , Hipotálamo Posterior/metabolismo , Neurônios/metabolismo , Taquicardia/etiologia , Taquicardia/metabolismo , Animais , Pressão Sanguínea , Hormônio Liberador da Corticotropina/farmacologia , Expressão Gênica , Frequência Cardíaca , Hipotálamo Posterior/efeitos dos fármacos , Rim/efeitos dos fármacos , Rim/inervação , Masculino , Bulbo/efeitos dos fármacos , Bulbo/metabolismo , Microinjeções , Neurônios/efeitos dos fármacos , Ratos , Receptores de Hormônio Liberador da Corticotropina/genética , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Sistema Nervoso Simpático , Taquicardia/fisiopatologia , Vagotomia
7.
Neuroreport ; 25(3): 164-70, 2014 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-24128868

RESUMO

The caudate putamen (CPu) has been suggested to be involved in nociceptive modulation. Some neurotransmitters, including acetylcholine (ACh), participate in pain modulation in the central nervous system. However, the active mechanism of ACh on the pain-related neurons in the CPu remains unclear. This study aimed to investigate the effects of the cholinergic agonists ACh and pilocarpine and the muscarinic ACh receptor antagonist atropine on the pain-induced response of pain-related neurons in the CPu of Wistar rats. Trains of electrical impulses applied to the sciatic nerve of rat were used as the noxious stimulus. The electrical activities of pain-excited neurons (PENs) or pain-inhibited neurons (PINs) in the CPu were recorded by a glass microelectrode. Our results showed that an intra-CPu injection of 4 µg/2 µl ACh or pilocarpine decreased and increased the pain-induced discharge frequency in the PENs and PINs, respectively. Intra-CPu administration of 1 µg/2 µl atropine produced the opposite effect on these neurons. These findings indicate that ACh may play an analgesic role by affecting the electric activities of PENs and PINs, and the muscarinic pathway may be involved in the modulation of pain perception in the CPu.


Assuntos
Acetilcolina/metabolismo , Núcleo Caudado/metabolismo , Neurônios/metabolismo , Percepção da Dor , Putamen/metabolismo , Potenciais de Ação , Animais , Atropina/farmacologia , Núcleo Caudado/efeitos dos fármacos , Estimulação Elétrica , Microeletrodos , Agonistas Muscarínicos/farmacologia , Antagonistas Muscarínicos/farmacologia , Neurônios/efeitos dos fármacos , Percepção da Dor/efeitos dos fármacos , Pilocarpina/farmacologia , Putamen/efeitos dos fármacos , Distribuição Aleatória , Ratos , Ratos Wistar , Receptores Muscarínicos/metabolismo , Nervo Isquiático , Fatores de Tempo
8.
Pharmacol Rep ; 63(2): 417-22, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21602596

RESUMO

This study examined the effects of norepinephrine (NE) and phentolamine on the electrical activities of pain-excited neurons (PENs) and pain-inhibited neurons (PINs) in the nucleus accumbens (NAc) of Wistar rats. Trains of electric pulses applied to the right sciatic nerve were used to provide noxious stimulation, and the discharges of PENs and PINs were recorded using a glass microelectrode. Our results revealed that in response to noxious stimulation, NE decreases the evoked discharge frequency of PENs and increases the evoked discharge frequency of PINs in the NAc of healthy rats, whereas phentolamine produced opposite responses. These results demonstrate that NE is involved in the modulation of nociceptive information transmission in the NAc.


Assuntos
Neurônios/metabolismo , Norepinefrina/metabolismo , Núcleo Accumbens/metabolismo , Dor/fisiopatologia , Animais , Estimulação Elétrica , Feminino , Masculino , Microeletrodos , Norepinefrina/farmacologia , Fentolamina/farmacologia , Ratos , Ratos Wistar , Nervo Isquiático/metabolismo
9.
Biochem Biophys Res Commun ; 395(3): 407-11, 2010 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-20382122

RESUMO

Dizocilpine maleate (MK-801) causes the blockage of the glutamic acid (Glu) receptors in the central nervous system that are involved in pain transmission. However, the mechanism of action of MK-801 in pain-related neurons is not clear, and it is still unknown whether Glu is involved in the modulation of this processing. This study examines the effect of MK-801, Glu on the pain-evoked response of pain-excitation neurons (PENs) and pain-inhibition neurons (PINs) in the nucleus accumbens (NAc) of rats. The trains of electric impulses applied to the sciatic nerve were used as noxious stimulation. The electrical activities of PENs or PINs in NAc were recorded by a glass microelectrode. Our results revealed that the lateral ventricle injection of Glu increased the discharged frequency and shortened the discharged latency of PEN, and decreased the discharged frequency and prolonged the discharged inhibitory duration (ID) of PIN in NAc of rats evoked by the noxious stimulation, while intra-NAc administration of MK-801 produced the opposite response. On the basis of above findings we can deduce that Glu, MK-801 and N-methyl-D-aspartate (NMDA) receptor are involved in the modulation of nociceptive information transmission in NAc.


Assuntos
Analgésicos/farmacologia , Maleato de Dizocilpina/farmacologia , Ácido Glutâmico/fisiologia , Núcleo Accumbens/efeitos dos fármacos , Dor/fisiopatologia , Receptores de N-Metil-D-Aspartato/fisiologia , Transmissão Sináptica/efeitos dos fármacos , Animais , Masculino , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Núcleo Accumbens/citologia , Núcleo Accumbens/fisiologia , Ratos , Ratos Wistar
10.
Neurosci Lett ; 471(2): 125-8, 2010 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-20093167

RESUMO

It has been proven that norepinephrine (NE) regulates antinociception through its action on alpha-adrenoceptors located in brain nuclei, spinal cord, and peripheral organs. However, the supraspinal mechanism of noradrenergic pain modulation is controversial. The present study was aimed at investigating the nociceptive effects induced by injecting different doses of NE and phentolamine into the caudate putamen (CPU) of rats. The thermal pain threshold of the rats was measured by performing a tail-flick test. The tail-flick latency (TFL) was measured at 2-60 min after microinjection of the drugs. Our results revealed that the thermal pain threshold increased (long TFL) after the administration of a low dose of NE (2 microg/2 microl) and decreased (short TFL) after injection of a high dose of NE (8 microg/2 microl). In contrast, the pain threshold decreased after the administration of a low dose of phentolamine (1 microg/2 microl), while it increased after injection of a high dose of phentolamine (4 microg/2 microl). These results indicated that the injection of different doses of NE in the CPU of the rats produced opposite effects on the pain threshold, as determined by the tail-flick tests.


Assuntos
Norepinefrina/farmacologia , Dor/fisiopatologia , Putamen/fisiopatologia , Animais , Relação Dose-Resposta a Droga , Temperatura Alta , Microinjeções , Norepinefrina/fisiologia , Dor/metabolismo , Medição da Dor , Limiar da Dor , Fentolamina/farmacologia , Putamen/efeitos dos fármacos , Ratos , Tempo de Reação , Cauda/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...