Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 324: 117819, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38286158

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Qiteng Xiaozhuo Granules (QTXZG), a traditional Chinese medicine prescription, is widely acknowledged for its therapeutic efficacy and lack of discernible toxicity in clinical practice, substantiating its potential in the treatment of chronic glomerulonephritis (CGN). Nevertheless, the specific effectiveness and underlying mechanisms of QTXZG remain insufficiently explored. AIM OF THE STUDY: The purpose of this study was to explore the mechanism of the QTXZG in the treatment of CGN via targeting autophagy based on serum pharmacochemistry, network pharmacology, and experimental validation. METHODS: Serum samples from SD rats orally administered QTXZG were analyzed using UPLC-QE/MS to identify contained compounds. Network and functional enrichment analyses elucidated QTXZG's targets and biological mechanisms. Reliability was ensured through molecular docking, in vivo and in vitro experiments. RESULTS: After oral administration of QTXZG, 39 enriched compounds in serum samples collected 1 h later were identified as potential active agents, with 508 potential targets recognized as QTXZG-specific targets. Through integration of various databases, intersection analysis of QTXZG targets, CGN-related genes, and autophagy-related targets identified 10 core autophagy-related targets for QTXZG in CGN. GO and KEGG analyses emphasized their roles in autophagy, inflammation, and immune processes, particularly emphasizing the enrichment of the AMPK/mTOR signaling pathway. Molecular docking results demonstrated strong binding affinities between QTXZG's key compounds and the predicted core targets. In animal experiments, QTXZG was found to ameliorate renal tissue damage in CGN model mice, significantly reducing serum creatinine (Scr) and blood urea nitrogen (BUN) levels. Importantly, both animal and cell experiments revealed QTXZG's ability to decrease excessive ROS and inflammatory factor release in mesangial cells. Furthermore, in vitro and in vivo experiments confirmed QTXZG's capacity to upregulate Beclin1 and LC3II/I expression, decrease p62 expression, and induce CGN autophagy through modulation of the AMPK/mTOR pathway. CONCLUSIONS: This study indicated that QTXZG can induce autophagy in CGN by affecting the AMPK/mTOR pathway, and induction of autophagy may be one of the possible mechanisms of QTXZG's anti-CGN.


Assuntos
Medicamentos de Ervas Chinesas , Glomerulonefrite , Animais , Camundongos , Ratos , Ratos Sprague-Dawley , Farmacologia em Rede , Proteínas Quinases Ativadas por AMP , Simulação de Acoplamento Molecular , Reprodutibilidade dos Testes , Glomerulonefrite/tratamento farmacológico , Autofagia , Doença Crônica , Serina-Treonina Quinases TOR , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico
2.
Biomedicines ; 11(9)2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37760894

RESUMO

BACKGROUND: Aging plays an essential role in the development of diabetic nephropathy (DN). This study aimed to identify and verify potential aging-related genes associated with DN using bioinformatics analysis. METHODS: To begin with, we combined the datasets from GEO microarrays (GSE104954 and GSE30528) to find the genes that were differentially expressed (DEGs) across samples from DN and healthy patient populations. By overlapping DEGs, weighted co-expression network analysis (WGCNA), and 1357 aging-related genes (ARGs), differentially expressed ARGs (DEARGs) were discovered. We next performed functional analysis to determine DEARGs' possible roles. Moreover, protein-protein interactions were examined using STRING. The hub DEARGs were identified using the CytoHubba, MCODE, and LASSO algorithms. We next used two validation datasets and Receiver Operating Characteristic (ROC) curves to determine the diagnostic significance of the hub DEARGs. RT-qPCR, meanwhile, was used to confirm the hub DEARGs' expression levels in vitro. In addition, we investigated the relationships between immune cells and hub DEARGs. Next, Gene Set Enrichment Analysis (GSEA) was used to identify each biomarker's biological role. The hub DEARGs' subcellular location and cell subpopulations were both identified and predicted using the HPA and COMPARTMENTS databases, respectively. Finally, drug-protein interactions were predicted and validated using STITCH and AutoDock Vina. RESULTS: A total of 57 DEARGs were identified, and functional analysis reveals that they play a major role in inflammatory processes and immunomodulation in DN. In particular, aging and the AGE-RAGE signaling pathway in diabetic complications are significantly enriched. Four hub DEARGs (CCR2, VCAM1, CSF1R, and ITGAM) were further screened using the interaction network, CytoHubba, MCODE, and LASSO algorithms. The results above were further supported by validation sets, ROC curves, and RT-qPCR. According to an evaluation of immune infiltration, DN had significantly more resting mast cells and delta gamma T cells but fewer regulatory T cells and active mast cells. Four DEARGs have statistical correlations with them as well. Further investigation revealed that four DEARGs were implicated in immune cell abnormalities and regulated a wide range of immunological and inflammatory responses. Furthermore, the drug-protein interactions included four possible therapeutic medicines that target four DEARGs, and molecular docking could make this association practical. CONCLUSIONS: This study identified four DEARGs (CCR2, VCAM1, CSF1R, and ITGAM) associated with DN, which might play a key role in the development of DN and could be potential biomarkers in DN.

3.
Exp Ther Med ; 26(2): 403, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37522060

RESUMO

Long non-coding RNAs (lncRNAs) are ncRNA transcripts >200 nucleotides that are important genetic regulators. LncRNAs can directly regulate mRNA through a lncRNA-mRNA regulatory mode and can also regulate mRNA through competitive binding to micro (mi)RNA, which is generally known as the competitive endogenous RNA (ceRNA) network. The present study evaluated the functional roles and regulatory networks of lncRNAs in chronic glomerulonephritis (CGN). The proliferative ability of mouse glomerular mesangial cells (GMCs) induced by different concentrations of lipopolysaccharide (LPS) was assessed using the Cell Counting Kit-8 assay, and RNA sequencing (RNA-seq) was performed to identify differentially expressed lncRNAs in LPS-induced GMCs. Based on the sequencing results, six lncRNAs were selected for validation using reverse transcription-quantitative PCR (RT-qPCR). Furthermore, the lncRNA-mRNA regulatory network and the lncRNA-miRNA-mRNA ceRNA network were constructed to assess the role and mechanism of CGN-related lncRNAs. To elucidate the biological functions of lncRNAs, Gene Ontology (GO) biological process term enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed on all mRNAs involved in the lncRNA-mRNA regulatory network and in the ceRNA network. A total of 1,532 differentially expressed lncRNAs, including 594 upregulated lncRNAs and 938 downregulated lncRNAs, were identified using RNA-seq. The results of RT-qPCR validation were consistent with RNA-seq results. An lncRNA-mRNA regulatory network, including 236 lncRNAs and 556 mRNAs, and a ceRNA network, including 6 lncRNAs, 18 miRNAs and 419 mRNAs, were successfully constructed. The GO biological process term enrichment and KEGG pathway enrichment analyses demonstrated that those lncRNAs were often related to inflammatory response and substance metabolism. The present study identified key CGN-related lncRNAs in LPS-induced GMCs, and further demonstrated a global view of the lncRNA-mRNA regulatory network and ceRNA network involved in CGN. These results offered novel insights into the roles of lncRNAs in the pathogenesis of CGN and identified potential diagnostic biomarkers.

4.
Inflamm Res ; 72(3): 623-638, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36700958

RESUMO

BACKGROUND: Increasing evidence indicates that N6-methyladenosine (m6A) modification of mRNAs has been shown to play a critical role in the occurrence and development of many diseases, while little is known about m6A modification in long non-coding RNAs (LncRNAs). Our study aims to investigate the potential functions of LncRNA m6A modifications in lipopolysaccharide (LPS)-induced mouse mesangial cells (MMCs), providing us with a new perspective on the molecular mechanisms of chronic glomerulonephritis (CGN) pathogenesis. METHODS: Differentially methylated LncRNAs were identified by Methylated RNA immunoprecipitation sequencing (MeRIP-seq). LncRNA-mRNA and LncRNA-associated LncRNA-miRNA-mRNA (CeRNA) networks were constructed by bioinformatics analysis. Furthermore, we utilized gene ontology (GO) and pathway enrichment analyses (KEGG) to explore target genes from co-expression networks. In addition, the total level of m6A RNA methylation and expression of methyltransferase and pro-inflammatory cytokines were detected by the colorimetric quantification method and western blot, respectively. Cell viability and cell cycle stage were detected by cell counting kit-8 (CCK-8) and flow cytometry. RESULTS: In total, 1141 differentially m6A-methylated LncRNAs, including 529 hypermethylated LncRNAs and 612 hypomethylated LncRNAs, were determined by MeRIP-seq. The results of GO and KEGG analysis revealed that the target mRNAs were mainly enriched in signal pathways, such as the NF-kappa B signaling pathway, MAPK signaling pathway, Toll-like receptor signaling pathway, and apoptosis signaling pathway. In addition, higher METTL3 expression was found in CGN kidney tissues using the GEO database. METTL3 knockdown in MMC cells drastically reduced the levels of m6A RNA methylation, pro-inflammatory cytokines IL6 and TNF-α, and inhibited cell proliferation and cycle progression. CONCLUSIONS: Our findings provide a basis and novel insight for further investigations of m6A modifications in LncRNAs for the pathogenesis of CGN.


Assuntos
Glomerulonefrite , RNA Longo não Codificante , Camundongos , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Doença Crônica , RNA Mensageiro/metabolismo , Citocinas
5.
Genes Genomics ; 45(4): 475-490, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36264417

RESUMO

BACKGROUND: Circular RNAs (circRNAs), a unique novel type of RNA, have been widely reported to be involved in physiologic and pathologic processes in humans. However, the exact molecular pathogenesis of circRNAs in chronic glomerulonephritis (CGN) is far from clear. OBJECTIVE: This paper aims to evaluate the specific expression profile of circRNAs in renal cortex tissues from Adriamycin-induced CGN rats. METHODS: CircRNAs were screened in renal cortex tissues from 3 CGN rats and 3 control rats by using high-throughput sequencing (HTS). Then, 4 circRNAs were selected randomly for verification by quantitative real-time polymerase chain reaction (qRT-PCR). In addition, the differentially expressed (DE) circRNAs were analyzed by bioinformatics methods. RESULTS: In total, 31 significantly DE circRNAs were identified, which revealed their potential roles in CGN; in particular, we found that 4 confirmed altered circRNAs (rno-circ-RNAs 689, 3217, 1327, and 5001) might play important roles in the development of CGN. CONCLUSION: This study reveals a cluster of circRNAs that are DE in Adriamycin-induced CGN rats, which brings us closer to understanding the pathogenic mechanisms and may provide new potential targets for clinical treatment.


Assuntos
Glomerulonefrite , RNA Circular , Humanos , Ratos , Animais , RNA Circular/genética , RNA Circular/metabolismo , RNA/genética , RNA/metabolismo , Doença Crônica , Glomerulonefrite/induzido quimicamente , Glomerulonefrite/genética , Glomerulonefrite/tratamento farmacológico , Doxorrubicina
6.
Naunyn Schmiedebergs Arch Pharmacol ; 395(9): 1075-1085, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35687145

RESUMO

Chronic glomerulonephritis (CGN) is a disease occurred in glomeruli. The mechanism of CGN is regarded to be involved in a range of inflammatory responses. MicroRNA-339-5p (miR-339-5p) has been reported to be involved in inflammatory responses in many diseases. However, the role of miR-339-5p in CGN remains unclear. The purpose of this study was to investigate the role of miR-339-5p in lipopolysaccharide (LPS)-induced nephritis injury in vitro. The real-time reverse transcriptase-polymerase chain reaction (RT-qPCR) and western blot (WB) were used to detect the expression of miR-339-5p and Syk/Ras/c-Fos pathway. Double luciferase was performed to identify targeted binding of miR-339-5p to Syk. Cell counting kit-8 (CCK-8) and flow cytometry were used to observe cell viability and cell cycle. Enzyme-linked immunosorbent assay (ELISA) was performed to measure the concentrations of inflammatory cytokines IL-1ß, IL-10, IL-6, and TNF-α. Lipopolysaccharide (LPS) could increase HBZY-1 (rat mesangial cells) cell viability, decrease the G2 phase, and promote cell proliferation and accelerate inflammatory cytokine. However, overexpression of miR-339-5p could inhibit LPS-induced HBZY-1 cell viability, decrease the expression of Syk/Ras/c-Fos signaling pathway, downregulate the expression level of inflammatory cytokines, increase the G2 phase, and inhibit cell proliferation. miR-339-5p could inhibit the proliferation and inflammation of the rat mesangial cells through regulating Syk/Ras/c-Fos signaling pathway.


Assuntos
Lipopolissacarídeos , MicroRNAs/genética , Animais , Apoptose , Citocinas , Células Mesangiais , Ratos , Transdução de Sinais
7.
Naunyn Schmiedebergs Arch Pharmacol ; 395(4): 445-458, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35119478

RESUMO

N6-Methyladenosine (m6A) is the most prevalent internal modification of messenger RNA (mRNA) in eukaryotes. The underlying molecular mechanisms of m6A modification in chronic glomerulonephritis (CGN) remain unexplored. Here, we performed methylated RNA immunoprecipitation sequencing (MeRIP-seq) and RNA sequencing (RNA-seq) analyses to assess the alterations of epitranscriptome-wide m6A profile in lipopolysaccharide (LPS)-induced mouse mesangial cells (MMC). The results of our data showed 2153 significantly differential m6A peaks and 358 significantly differentially expressed genes. Furthermore, integrated analysis from MeRIP-seq and RNA-seq identified a total of 64 genes with differential m6A modification and expressed levels, of which 5 genes displayed hypermethylation and upregulation, 42 genes displayed hypermethylation and downregulation, 11 genes displayed hypomethylation and upregulation, and 8 genes displayed hypomethylation and downregulation. Many of them (including Fosl1, Sorbs1, Ambp, Fgfr3, Nedd9, Fgg, Trim13, Fgf22, Mylk, and Muc6) are implicated in the regulation of the immune and inflammatory response. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analysis found that differential 64 genes were mainly enriched in fatty acid oxidation, apoptosis signaling pathway, complement and coagulation cascades, and PPAR signaling pathway. Together, our study provided a new perspective on the understanding of molecular features of m6A modification in CGN pathogenic pathogenesis.


Assuntos
Lipopolissacarídeos , Células Mesangiais , Adenosina/análogos & derivados , Adenosina/metabolismo , Animais , Imunoprecipitação , Lipopolissacarídeos/farmacologia , Células Mesangiais/metabolismo , Camundongos
8.
Front Pharmacol ; 13: 1069810, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36642989

RESUMO

Background: Chronic kidney disease (CKD), characterized by sustained inflammation and immune dysfunction, is highly prevalent and can eventually progress to end-stage kidney disease. However, there is still a lack of effective and reliable diagnostic markers and therapeutic targets for CKD. Methods: First, we merged data from GEO microarrays (GSE104948 and GSE116626) to identify differentially expressed genes (DEGs) in CKD and healthy patient samples. Then, we conducted GO, KEGG, HPO, and WGCNA analyses to explore potential functions of DEGs and select clinically significant modules. Moreover, STRING was used to analyse protein-protein interactions. CytoHubba and MCODE algorithms in the cytoscape plug-in were performed to screen hub genes in the network. We then determined the diagnostic significance of the obtained hub genes by ROC and two validation datasets. Meanwhile, the expression level of the biomarkers was verified by IHC. Furthermore, we examined immunological cells' relationships with hub genes. Finally, GSEA was conducted to determine the biological functions that biomarkers are significantly enriched. STITCH and AutoDock Vina were used to predict and validate drug-gene interactions. Results: A total of 657 DEGs were screened and functional analysis emphasizes their important role in inflammatory responses and immunomodulation in CKD. Through WGCNA, the interaction network, ROC curves, and validation set, four hub genes (IL10RA, CD45, CTSS, and C1QA) were identified. Furthermore, IHC of CKD patients confirmed the results above. Immune infiltration analysis indicated that CKD had a significant increase in monocytes, M0 macrophages, and M1 macrophages but a decrease in regulatory T cells, activated dendritic cells, and so on. Moreover, four hub genes were statistically correlated with them. Further analysis exhibited that IL10RA, which obtained the highest expression level in hub genes, was involved in abnormalities in various immune cells and regulated a large number of immune system responses and inflammation-related pathways. In addition, the drug-gene interaction network contained four potential therapeutic drugs targeting IL10RA, and molecular docking might make this relationship viable. Conclusion: IL10RA and its related hub molecules might play a key role in the development of CKD and could be potential biomarkers in CKD.

9.
Naunyn Schmiedebergs Arch Pharmacol ; 394(12): 2451-2470, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34618179

RESUMO

This study was to explore the effective components, potential targets, and pathways of Jianpi Qushi Huayu Formula (JQHF) for the treatment of chronic glomerulonephritics (CGN). First, the Chinese Medicine System Pharmacology Database and Analysis Platform (TCMSP), GeneCards, and OMIM databases were used to collect the major active components of JQHF and potential therapeutic targets of CGN. Then, functional enrichment analysis was performed to clarify the mechanisms of the JQHF on CGN. Subsequently, molecular docking was simulated to assess the binding ability of key targets and major active components. Finally, quantitative real-time PCR and western blot were performed for experimental verification of cells in vitro. A total of 55 active ingredients contained and 220 putative identified targets were screened from JQHF, of which 112 overlapped with the targets of CGN and were considered potential therapeutic targets. Then, we found quercetin and kaempferol are two key ingredients of JQHF, which may act on the top 10 screened targets of PPI, affecting CGN through related signal transduction pathways. Subsequently, molecular docking predicted that quercetin and kaempferol bind firm with the top 10 core targets of PPI. Further experiment verified some results and showed that JQHF has protected glomerular mesangial cells from lipopolysaccharide-induced inflammation by inhibiting expressions of IL6, TNF-α, and AKT1, and activating expressions of VEGFA. Based on network pharmacology, we explored the multi-component, multi-target, and multi-pathway characteristics of JQHF in treating CGN, and found that JQHF could act on IL6, TNF-α, VEGFA, and AKT1 to exert the effect of anti-CGN, which provided new ideas and methods for further research on the mechanism of JQHF in treating CGN.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Glomerulonefrite/tratamento farmacológico , Quempferóis/farmacologia , Quercetina/farmacologia , Animais , Doença Crônica , Medicamentos de Ervas Chinesas/química , Glomerulonefrite/fisiopatologia , Quempferóis/isolamento & purificação , Masculino , Simulação de Acoplamento Molecular , Farmacologia em Rede , Quercetina/isolamento & purificação , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
10.
Zhongguo Zhong Yao Za Zhi ; 45(10): 2395-2405, 2020 May.
Artigo em Chinês | MEDLINE | ID: mdl-32495598

RESUMO

In order to clarify the main chemical constituents of Huangdi Anxiao Capsules, an ultra-high performance liquid coupled with quadrupole time-of-flight mass spectrometry(UPLC-Q-TOF-MS~E) combined with Waters UNIFI software were successfully used to rapidly identify the chemical constituents in Huangdi Anxiao Capsules. The mass spectrometry data of chemical constituents from Huangdi Anxiao Capsules were collected by UPLC-Q-TOF-MS~E, and their structures were identified by the results of UNIFI software according to relative retention time of reference standards, MS feature fragments and literature data of each compound. A total of 100 compounds in Huangdi Anxiao Capsules were identified, including 25 compounds from Pueraria Lobate Radix, 22 compounds from Coptis Rhizoma, 6 compounds from Ophiopogonis Radix, 14 compounds from Eriobotryae Folium, 22 compounds from Rehmanniae Radix, and 15 compounds from Notoginseng Radix et Rhizoma. Among them, 3 compounds were common components. These 100 compounds included flavonoids, alkaloids, saponins and organic acids. This study systematically analyzed the chemical composition of Huangdi Anxiao Capsules, so as to provide evidences for defining the chemical material basis of Huangdi Anxiao Capsules.


Assuntos
Medicamentos de Ervas Chinesas , Cápsulas , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas , Rizoma , Software
11.
J Diabetes Res ; 2020: 5947304, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32215271

RESUMO

BACKGROUND: Diabetic nephropathy (DN), characterized by hyperglycemia, hypertension, proteinuria, and edema, is a unique microvascular complication of diabetes. Traditional Chinese medicine (TCM) Astragalus membranaceus (AM) has been widely used for DN in China while the pharmacological mechanisms are still unclear. This work is aimed at undertaking a network pharmacology analysis to reveal the mechanism of the effects of AM in DN. Materials and Methods. In this study, chemical constituents of AM were obtained via Traditional Chinese Medicine Systems Pharmacology Database (TCMSP), and the potential targets of AM were identified using the Therapeutic Target Database (TTD). DisGeNET and GeneCards databases were used to collect DN-related target genes. DN-AM common target protein interaction network was established by using the STRING database. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were carried out to further explore the DN mechanism and therapeutic effect of AM. The network diagrams of the active component-action target and protein-protein interaction (PPI) networks were constructed using Cytoscape software. RESULTS: A total of 16 active ingredients contained and 78 putative identified target genes were screened from AM, of which 42 overlapped with the targets of DN and were considered potential therapeutic targets. The analysis of the network results showed that the AM activity of component quercetin, formononetin, calycosin, 7-O-methylisomucronulatol, and quercetin have a good binding activity with top ten screened targets, such as VEGFA, TNF, IL-6, MAPK, CCL3, NOS3, PTGS2, IL-1ß, JUN, and EGFR. GO and KEGG analyses revealed that these targets were associated with inflammatory response, angiogenesis, oxidative stress reaction, rheumatoid arthritis, and other biological process. CONCLUSIONS: This study demonstrated the multicomponent, multitarget, and multichannel characteristics of AM, which provided a novel approach for further research of the mechanism of AM in the treatment of DN.


Assuntos
Astragalus propinquus , Nefropatias Diabéticas/tratamento farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico , Extratos Vegetais/uso terapêutico , Mapas de Interação de Proteínas , Ontologia Genética , Humanos , Medicina Tradicional Chinesa
12.
Gene ; 728: 144279, 2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-31821871

RESUMO

AIM OF THE STUDY: Chronic glomerulonephritis (CGN) is the most common form of primary glomerular disease. Qi Teng Xiao Zhuo granules have been proposed as a prescription of traditional Chinese medicine (TCM) for treatment of CGN, however,the comprehensive molecular mechanism underlying this therapeutic effectremains unclear to date. Our study aimed to evaluate and analyze the possible roles and molecular mechanisms of Qi Teng Xiao Zhuo granule-mediated treatment of CGN induced by adriamycin in rats. MATERIALS AND METHODS: RNA-sequencing and real-time polymerase chain reaction (RT-PCR) were applied to identify specifically expressed long noncoding RNAs (lncRNAs) in glomerular tissues of rats from the control group, adriamycin-induced group, and Qi Teng Xiao Zhuo granules group (n = 3). Differentially expressed lncRNAs and mRNAs (messengerRNAs) were screened out among the 3 groups. Gene ontology (GO) and pathway enrichment analyses were performed to analyze the biological functions and pathways for mRNAs. LncRNA-mRNA co-expression network was constructed to analyse for the genes. The protein-protein interaction (PPI) network was visualized. RESULTS: A total of 473 significantly up and down-regulated lncRNAs, 753 up and down-regulated mRNAs were identified. Additionally, it is worth noting that TOP2a (topoisomerase (DNA) II alpha), with the highest connectivity degree in PPI network, was enriched in variouskinds of pathways. Coding-non-coding gene co-expression networks (CNC network) were drawn based on the correlation analysis between lncRNAs and mRNAs. Ten lncRNAs, NONRATT009275.2, NONRATT025409.2, NONRATT025419.2, MSTRG.7681.1, ENSRNOT00000084373, NONRATT000512.2, NONRATT006734.2, ENSRNOT00000084386, NONRATT021738.2, ENSRNOT00000084080, were selected to analyse the relationship between LncRNAs and Qi Teng Xiao Zhuo granules via the CNC network (Coding-non-coding gene co-expression networks) and GO analysis. Real-time PCR results confirmed that the six lncRNAs were specifically expressed in the Qi Teng Xiao Zhuo granules rats. CONCLUSIONS: The ten lncRNAs might play important roles in the Qi Teng Xiao Zhuo granules treatment of CGN. Key genes, such as Ptprc (protein tyrosine phosphatase, receptor type, C), TOP2a, Fos (FBJ osteosarcoma oncogene), Myc (myelocytomatosis oncogene), etc, may be crucial biomarkers for Qi Teng Xiao Zhuo granules.


Assuntos
Biomarcadores/análise , Medicamentos de Ervas Chinesas/farmacologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Glomerulonefrite/genética , RNA Longo não Codificante/genética , Animais , Doença Crônica , Glomerulonefrite/tratamento farmacológico , Masculino , Mapas de Interação de Proteínas , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley
13.
J Diabetes Res ; 2019: 4650906, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31179340

RESUMO

BACKGROUND: Type 2 diabetes mellitus (T2DM) has become a chronic disease, serious harm to human health. Complications of the blood pipe are the main cause of disability and death in diabetic patients, including vascular lesions that directly affects the prognosis of patients with diabetes and survival. This study was to determine the influence of high glucose and related mechanism of vascular lesion of type 2 diabetes mellitus pathogenesis. METHODS: In vivo aorta abdominalis of GK rats was observed with blood pressure, heart rate, hematoxylin and eosin (H&E), Masson, and Verhoeff staining. In vitro cells were cultured with 30 mM glucose for 24 h. RT-QPCR was used to detect the mRNA expression of endothelial markers PTEN, PI3K, Akt, and VEGF. Immunofluorescence staining was used to detect the expression of PTEN, PI3K, Akt, and VEGF. PI3K and Akt phosphorylation levels were detected by Western blot analysis. RESULTS: Heart rate, systolic blood pressure, diastolic blood pressure, and mean blood pressure in the GK control group were higher compared with the Wistar control group and no difference compared with the GK experimental model group. Fluorescence intensity of VEGF, Akt, and PI3K in the high-sugar stimulus group was stronger than the control group; PTEN in the high-sugar stimulus group was weakening than the control group. VEGF, Akt, and PI3K mRNA in the high-sugar stimulus group were higher than the control group; protein expressions of VEGF, Akt, and PI3K in the high-sugar stimulus group were higher than the control group. PTEN mRNA in the high-sugar stimulus group was lower than the control group. Protein expression of PTEN in the high-sugar stimulus group was lower than the control group. CONCLUSIONS: Angiogenesis is an important pathogenesis of T2DM vascular disease, and PTEN plays a negative regulatory role in the development of new blood vessels and can inhibit the PI3K/Akt signaling pathway.


Assuntos
Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/fisiopatologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Animais , Aorta Abdominal/metabolismo , Glicemia/análise , Pressão Sanguínea , Doença Crônica , Diabetes Mellitus Tipo 2/mortalidade , Glicosilação , Frequência Cardíaca , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , NG-Nitroarginina Metil Éster/química , Neovascularização Patológica , Fosforilação , Prognóstico , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Resultado do Tratamento
14.
Drug Des Devel Ther ; 13: 1901-1913, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31239641

RESUMO

Objectives: To screen and study circular RNA (circRNA) expression profiles in QTXZG-mediated treatment of chronic glomerulonephritis (CGN) induced by adriamycin in rats and to research the possible roles and molecular mechanisms of QTXZG. Materials and methods: Next-generation RNA sequencing was used to identify circRNA expression profiles in CGN after QTXZG treatment compared with a CGN model group and a control group. Bioinformatics analysis was performed to predict potential target miRNAs and mRNAs. GO and pathway analyses for potential target mRNAs were used to explore the potential roles of differentially expressed (DE) circRNAs. Results: We identified 31 and 21 significantly DE circRNAs between the model group vs the control group and the model group vs the QTXZG group, respectively. Four circRNAs that resulted from the establishment of the CGN model were reversed following treatment with QTXZG. Further analysis revealed that these four circRNAs may play important roles in the development of CGN. Conclusions: This study elucidated the comprehensive expression profile of circRNAs in CGN rats after QTXZG treatment for the first time. Analysis of the circRNA-miRNA-mRNA-ceRNA network to determine potential function provided a comprehensive understanding of circRNAs that may be involved in the development of CGN. The current study indicated that therapeutic effects of QTXZG on CGN may be due to regulation of circRNA expression.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Glomerulonefrite/tratamento farmacológico , RNA Circular/antagonistas & inibidores , Animais , Medicamentos de Ervas Chinesas/administração & dosagem , Perfilação da Expressão Gênica , Glomerulonefrite/metabolismo , Glomerulonefrite/patologia , Masculino , Medicina Tradicional Chinesa , RNA Circular/genética , RNA Circular/metabolismo , Ratos , Ratos Sprague-Dawley
15.
Gene ; 687: 90-98, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30458286

RESUMO

BACKGROUND: Chronic glomerulonephritis (CGN) is the most common form of primary glomerular disease with unclear molecular mechanisms. Currently, limited study on long non-coding RNAs (lncRNAs) in CGN is available. Our study aimed to identify potential lncRNAs and genes in the normal and adriamycin-induced CGN rats, which to explore the potential molecular mechanisms of CGN pathogenesis. METHODS: To identify LncRNAs specifically expressed in CGN, the expression of LncRNAs in glomerular tissues of rats from the adriamycin-induced group (n = 3) was compared with that in the control group (n = 3) using RNA-sequencing and real-time polymerase chain reaction (RT-PCR). Identification of differentially expressed lncRNAs and mRNAs were performed between the 2 groups. Gene ontology (GO) and pathway enrichment analyses were performed to analyze the biological functions and pathways for the differentially expressed mRNAs. LncRNA-mRNA co-expression network was constructed to analyses for the genes. The protein-protein interaction (PPI) network was visualized. RESULTS: A total of 114 significantly up-regulated and 86 down-regulated lncRNAs, 1038 up-regulated and 88 down-regulated mRNAs were identified. Additionally, Il6, with the highest connectivity degree in PPI network, was noteworthy enriched in various kinds pathways. Coding-non-coding gene co-expression networks (CNC network) were drawn based on the correlation analysis between the differentially expressed LncRNAs and mRNAs. Ten LncRNAs, NONRATT000964.2, NONRATT018086.2, NONRATT023684.2, NONRATT009530.2, NONRATT006315.2, NONRATT026805.2, MSTRG.9260.1, NONRATT009155.2, MSTRG.7681.1, NONRATT009275.2, were selected to analyze the relationship between LncRNAs and CGN via the CNC network and GO analysis. Real-time PCR result confirmed that the six LncRNAs were specifically expressed in the CGN rats. CONCLUSIONS: The ten LncRNAs were differentially expressed and might play important roles in the development of CGN. Key genes, such as Il6, Ptprc, TOP2a, Fos, Myc, etc., may be crucial biomarkers for CGN.


Assuntos
Biomarcadores/análise , Doxorrubicina/farmacologia , Redes Reguladoras de Genes/efeitos dos fármacos , Glomerulonefrite/genética , Glomerulonefrite/patologia , RNA Longo não Codificante/genética , Animais , Doença Crônica , Perfilação da Expressão Gênica , Glomerulonefrite/tratamento farmacológico , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Mapas de Interação de Proteínas , Ratos , Ratos Sprague-Dawley
16.
Zhongguo Zhong Yao Za Zhi ; 43(21): 4317-4322, 2018 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-30583635

RESUMO

Zebrafish of different strains with 5 dpf (5 days post-fertilization) were selected and fed with 0.2% high-fat diet for 8 h and 3% glucose solution for 16 halternatively during the day and night for 4 consecutive days. The zebrafish model was established and randomly divided into model group, Huangdi Anxiao Capsules (260 mg·L⁻¹) group and pioglitazone (32 mg·L⁻¹) group. The drug treatment groups were given the water-soluble drugs, with a volume of 25 mL, and incubated in a 28 °C incubator for 4 days. To detect the exposure to the corresponding drugs, the normal control group was set up. Thirty zebrafish were included in each group. The effect of Huangdi Anxiao Capsules on vascular wall thickness, fluorescence intensity of islet beta cells, fluorescence intensity of macrophages, and blood flow velocity of zebrafish were detected. The expressions of vascular endothelial growth factor (vegfaa) and angiotensin converting enzyme (ACE) were detected by RT-PCR. The results showed that compared with the model group, Huangdi Anxiao Capsules can significantly reduce the thickness of the blood vessel wall, increase the fluorescence intensity of islet ß cells and macrophages, increase the blood flow velocity in vivo, and decrease the ACE and vegfaa expressions in zebrafish. It is suggested that Huangdi Anxiao Capsules may alleviate zebrafish vascular lesions by regulating the expressions of ACE and vegfaa.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Doenças Vasculares/tratamento farmacológico , Peixe-Zebra , Animais , Cápsulas , Dieta Hiperlipídica/efeitos adversos , Glucose/efeitos adversos , Peptidil Dipeptidase A/metabolismo , Distribuição Aleatória , Doenças Vasculares/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteínas de Peixe-Zebra/metabolismo
17.
Exp Ther Med ; 15(3): 2777-2785, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29599826

RESUMO

The aim of the present study was to explore changes in the urinary metabolic spectrum in rats with knee osteoarthritis, using gas chromatography-time of flight/mass spectrometry (GC-TOF/MS) to determine the metabonomic disease pathogenesis. Sprague-Dawley rats were randomly divided into the control and model groups (n=8/group), and 20 µl of 4% papain and 0.03 M L-cysteine was injected into the right knee on days 1, 3 and 7 to establish the knee osteoarthritis model. Following 14 days, urine was collected over 12 h and cartilage ultrastructural damage was assessed by hematoxylin-eosin staining. GC-TOF/MS, combined with principal component analysis, partial least squares discriminant modeling and orthogonal partial least squares discriminant modeling, was used to analyze the changes in the metabolic spectrum trajectory and to identify potential biomarkers and their related metabolic pathways. Compared with the control group, the synovial cell lining of the knee joint exhibited proliferation, inflammatory cell infiltration and collagen fiber hyperplasia in the knee osteoarthritis group. A total of 23 potential biomarkers were identified, including alanine, α-ketoglutarate, asparagine, maltose and glutamine. Furthermore, metabolomic pathogenesis of osteoarthritis may be related to disorders of amino acid metabolism, energy metabolism, fatty acid metabolism, vitamin B6 metabolism and nucleic acid metabolism.

18.
Gene ; 643: 46-54, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29199037

RESUMO

BACKGROUND: Chronic glomerulonephritis (CGN) is the most common form of primary glomerular disease with unclear molecular mechanisms, which related to immune-mediated inflammatory diseases. Our study intended to identify potential long non-coding RNAs (lncRNAs) and genes, and to determine the potential molecular mechanisms of CGN pathogenesis. METHODS: The microarray of GSE64265 and GSE46295 were downloaded from the Gene Expression Omnibus database, GSE64265 including 3 rats control kidney tissues and 5 rats model kidney tissues, GSE46295 including 3 rats control kidney tissues and 3 rats model kidney tissues, which was on the basis of GPL1355 platform. Identification of differentially expressed lncRNAs and mRNAs were performed between the 2 groups. Gene ontology (GO) and pathway enrichment analyses were performed to analyze the biological functions and pathways for the differentially expressed mRNAs. LncRNA-mRNA weighted co-expression network was constructed using the WGCNA package to analyses for the genes in the modules. The protein-protein interaction (PPI) network was visualized. RESULTS: A total of 40 significantly up-regulated and 24 down-regulated lncRNAs, 653 up-regulated and 128 down-regulated mRNAs were identified. Additionally, Cdk1, with the highest connectivity degree in PPI network, was noteworthy enriched in cell cycle. Seven lncRNAs: NONRATT026650, LOC102547664, NONRATT77021989, NONRATT012453, LOC102551856, LOC102553536 and NONRATT7047175 were observed in the modules of lncRNA-mRNA weighted co-expression network. CONCLUSIONS: LncRNAs NONRATT026650, LOC102547664, NONRATT77021989, NONRATT012453, LOC102551856, LOC102553536 and NONRATT7047175 were differentially expressed and might play important roles in the development of CGN. Key genes, such as Cd44, Rftn1, Runx1, may be crucial biomarkers for CGN.


Assuntos
Glomerulonefrite/genética , RNA Longo não Codificante/metabolismo , Animais , Biomarcadores , Bases de Dados de Ácidos Nucleicos , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/genética , Ontologia Genética , Redes Reguladoras de Genes/genética , Glomerulonefrite/metabolismo , Glomerulonefrite/veterinária , Análise de Sequência com Séries de Oligonucleotídeos/métodos , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Ratos , Transdução de Sinais
19.
Zhongguo Zhong Yao Za Zhi ; 42(9): 1782-1786, 2017 May.
Artigo em Chinês | MEDLINE | ID: mdl-29082707

RESUMO

To conduct multiple-reaction monitoring(MRM) quantitative analysis with ultra-high performance liquid chromatography coupled with mass spectrometry method(UPLC-MS/MS), determine the concentrations of psoralen, isopsoralen, bakuchiol and dehydrodiisoeugenol in plasma under positive iron mode with chloramghenicol as internal standard, and investigate the pharmacokinetics process of the main components before and after oral administration of drug pair Psoralea corylifolia -Myristica fragrants. Thirty-six SD rats were randomly divided into three group(A, B, C) and received P. corylifolia extract, P. corylifolia-M. fragrants extract, and M. fragrants extract respectively by intragastric administration. The plasma samples were collected at different time points. In the plasma samples, psoralen, isopsoralen, bakuchiol and dehydrodiisoeugenol showed good linear relationship within concentration rages of 0.098 125 to 39.25, 0.084 37 to 33.75, 0.046 875 to 18.75, and 0.11 to 2.2 mg•L⁻¹ respectively. The precision and stability results showed that the determination method of plasma concentration for such compositions was stable and reliable. The pharmacokinetic parameters obtained by DAS 2.0 showed varying differences before and after compatibility. According to the experimental results, the compatibility of P. corylifolia and M. fragrants can significantly impact the pharmacokinetic process of main components, expand their distribution and accelerate their metabolism and elimination in vivo.


Assuntos
Medicamentos de Ervas Chinesas/farmacocinética , Eugenol/análogos & derivados , Ficusina/farmacocinética , Myristica/química , Fenóis/farmacocinética , Psoralea/química , Animais , Cromatografia Líquida de Alta Pressão , Eugenol/sangue , Eugenol/farmacocinética , Ficusina/sangue , Furocumarinas/sangue , Furocumarinas/farmacocinética , Fenóis/sangue , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem
20.
J Ethnopharmacol ; 193: 140-149, 2016 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-27497640

RESUMO

BACKGROUND AND AIM: Chronic glomerulonephritis (CGN) is a primary glomerular disease that is related to immune-mediated inflammatory diseases. Qi Teng Xiao Zhuo granules have been proposed as a prescription of traditional Chinese medicine for treatment of CGN, but the comprehensive molecular mechanism underlying this therapeutic effect is not clear to date. The aim of this study was to evaluate and analyze the possible roles and molecular mechanisms of Qi Teng Xiao Zhuo granule-mediated treatment of CGN induced by adriamycin in rats. METHODS: For gene expression analysis, four samples of glomerular tissue from rats in the Qi Teng Xiao Zhuo granule group and four samples each from the adriamycin treated and control groups were hybridized with Agilent Rat 4×44K whole genome microarrays. KEGG and Gene Ontology (GO) analyses and LIMMA, String and Cytoscape software were used to analyze the functional microarray data and screen differentially expressed genes. Hub genes were identified using Pathway Studio software. Real-time PCR was performed to verify the selected genes. RESULTS: Microarray gene expression analysis showed that Pnoc, Cacfd1, Fos, Igll1, Lcn2, and Syk were among the most downregulated genes in the Qi Teng Xiao Zhuo granule group compared with the adriamycin treated group, whereas Cyp2c7, Hsd3b6, Acsm5, and Ugt2b15 were significantly upregulated. Functional analysis demonstrated that metabolism of xenobiotics by cytochrome P450, the B cell receptor signaling pathway, and cytokine-cytokine receptor interaction pathways were significantly downregulated in the Qi Teng Xiao Zhuo granule group and that GO terms related to positive regulation of immune response, immune response-activating signal transduction, cell differentiation, cell cycle, proliferation, and adhesion were significantly affected. Fos and Syk were considered to be potential hub genes. CONCLUSIONS: In the adriamycin-induced CGN rat model, comprehensive molecular mechanisms were involved with complex gene expression alterations containing many altered pathways and GO terms. However, how Qi Teng Xiao Zhuo granules regulate these events warrants further investigation.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Glomerulonefrite/genética , Medicina Tradicional Chinesa , Animais , Medicamentos de Ervas Chinesas/uso terapêutico , Glomerulonefrite/tratamento farmacológico , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...