Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncol Lett ; 27(2): 59, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38192662

RESUMO

Epidermal growth factor receptor (EGFR) is expressed in various types of cancer and is associated with the malignant biological behavior of cancer cells. In the present study, the expression of EGFR in hepatocellular carcinoma (HCC) tissues and liver cancer cells was detected by immunohistochemical staining, western blotting and immunofluorescence. Furthermore, a lentivirus was transduced into HepG2 liver cancer cells to knock down EGFR expression. Cell proliferation and migration, and the expression levels of epithelial-mesenchymal transition (EMT) markers were assessed by EdU staining, Cell Counting Kit-8, colony formation, wound healing and Transwell assays, and western blotting. The results revealed that EGF/EGFR can mediate EMT through the Akt/glycogen synthase kinase-3ß (GSK-3ß)/Snail signaling pathway to promote HepG2 cell proliferation and migration. Inhibition of the activation of the EGFR signaling pathway can help to partially reverse the EMT phenotype, and inhibit the proliferation and migration of HepG2 cells. In conclusion, the EGFR/Akt/GSK-3ß/Snail signaling pathway serves an important role in HCC progression, and inhibition of the activation of the EGFR signaling pathway may be a valuable strategy in liver cancer treatment.

2.
Biomed Pharmacother ; 159: 114246, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36652734

RESUMO

Monocyte-derived macrophages can be polarized into antitumor M1 phenotype, which inhibited the growth of tumors, and immune-suppressive M2 phenotype, which promoted the development and metastasis of tumors. Plantain polysaccharide (PLP), extracted from the Plantago asiatica, has shown its various biological activities. However, the ability of PLP involved in immune regulation was still obscure. Accordingly, we aimed to investigate whether PLP could polarize macrophages and further inhibit 4T1 tumor cells in vivo and in vitro. In this research, in vitro results showed that PLP displayed the potential in polarizing RAW264.7 macrophages into M1 phenotype and indirect inhibiting migratory effect on 4T1 cells. Furthermore, the phagocytosis and the release of reactive oxygen species (ROS) of macrophages were enhanced. In vivo anti-tumor results demonstrated that PLP could effectively inhibit the growth of 4T1 breast tumors by promoting accumulation of macrophages and T cells in the spleen and lymph node. In conclusion, these findings indicated that PLP inhibited the proliferation and progression of breast tumors by accumulating CD4+, CD8+ T cells and M1-like macrophages in lymph node and spleen, and therefore provided an experimental basis for PLP as a potential antitumor adjunctive therapy in preclinical and clinical trials.


Assuntos
Neoplasias da Mama , Plantago , Humanos , Feminino , Linfócitos T CD8-Positivos , Macrófagos , Fenótipo , Polissacarídeos/farmacologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral
3.
BMC Cancer ; 23(1): 87, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36698167

RESUMO

BACKGROUND: Insulin-like growth factor-1 receptor (IGF-1R) promotes cell proliferation and migration and inhibitsapoptosis, all of which can contribute to the development of cancers. METHOD: This study investigated the effect and mechanism of IGF-1R in mediating the desensitization of hepatocellular carcinoma (HCC) to sorafenib. RESULTS: IGF-1R, highly expressed in the HCC cell lines SK-Hep1 and HepG2, promotes cell proliferation, migration, and anti-apoptosis through PI3K / Akt and RAS / Raf / ERK signaling pathways, resulting in HCC resistance to sorafenib. Knockdown of IGF-1R by RNA interference decreased proliferation and cell migration and upregulation of sorafenib-induced apoptosis of HCC cells. In vivo studies demonstrated that IGF-1R knockdown inhibited the growth of SK-Hep1 xenografts. CONCLUSION: These data are evidence that IGF-1R participates in regulating the survival and cell growth of HCC through the PI3K / Akt and RAS / Raf / ERK signaling pathways. Intervention in the expression of IGF-1R may increase the inhibitory effect of sorafenib on HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Receptor IGF Tipo 1 , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor IGF Tipo 1/metabolismo , Transdução de Sinais , Sorafenibe/farmacologia
4.
Scand J Immunol ; 98(1): e13271, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38441314

RESUMO

The progression of hepatocellular carcinoma (HCC) involves multifactor, multistep interactions. High expression of interleukin-6 receptor (IL-6R) plays an important role in the occurrence and development of tumours, but the regulatory mechanism of IL-6R expression and its function in HCC have not been fully defined. Western blot was used to evaluate the phosphorylation of key kinases in the JAK2/STAT3 pathway and the protein expression levels of related proliferation molecules, migration molecules and apoptotic molecules. The antiapoptosis, migration and proliferation of cells of each group were analysed with JC-1 to judge the cell apoptosis rate, the EdU method to determine the proliferation vitality of the cells, clone formation experiments and Transwell experiments. High expression of IL-6R in cell lines, lower protein levels of the apoptotic molecules c-Caspase7 and c-Caspase3 and higher protein levels of the proliferative molecules p-P70S6K and migration molecules MMP9 and MMP2 were consistent with stronger antiapoptosis, proliferation and migration. Interestingly, IL-6 upregulated the expression of IL-6R by activating the JAK2/STAT3 signalling pathway. Also, the expression of IL-6R protein was downregulated after lentivirus knockdown of STAT3. In nude mice bearing subcutaneous tumours, upregulation of IL-6R expression after activation of the JAK2/STAT3 signalling pathway by IL-6 significantly increased tumour growth. Moreover, the expression of IL-6R protein was downregulated, and the terminal tumour volume was significantly downregulated in the lentiviral STAT3 knockdown group. IL-6 regulated the transcription of IL-6R through the activation of the JAK2/STAT3 signalling pathway.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Camundongos , Carcinoma Hepatocelular/genética , Interleucina-6 , Camundongos Nus , Neoplasias Hepáticas/genética , Receptores de Interleucina-6/genética
5.
Cell Death Discov ; 8(1): 500, 2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36581638

RESUMO

Pneumoconiosis is the most common and serious disease among coal miners. In earlier work on this subject, we documented that coal dust (CD) nanoparticles (CD-NPs) induced pulmonary fibrosis (PF) more profoundly than did CD micron particles (CD-MPs), but the mechanism has not been thoroughly studied. Based on the GEO database, jveen, STRING, and Cytoscape tools were used to screen hub genes regulating PF. Particle size distribution of CD were analyzed with Malvern nanoparticle size potentiometer. Combining 8 computational methods, we found that IGF1, POSTN, MMP7, ASPN, and CXCL14 may act as hub genes regulating PF. Based on the high score of IGF1 and its important regulatory role in various tissue fibrosis, we selected it as the target gene in this study. Activation of the IGF1/IGF1R axis promoted CD-NPs-induced PF, and inhibition of the axis activation had the opposite effect in vitro and in vivo. Furthermore, activation of the IGF1/IGF1R axis induced generation of reactive oxygen species (ROS) to promote epithelial-mesenchymal transition (EMT) in alveolar epithelial cells (AECs) to accelerate PF. High-throughput gene sequencing based on lung tissue suggested that cytokine-cytokine receptor interaction and the NF-kB signaling pathway play a key role in PF. Also, ROS induced inflammation and EMT by the activation of the NF-kB/NLRP3 axis to accelerate PF. ROS can induce the activation of AKT/GSK3ß signaling, and inhibition of it can inhibit ROS-induced inflammation and EMT by the NF-kB/NLRP3 axis, thereby inhibiting PF. CD-NPs induced PF by promoting inflammation and EMT via the NF-κB/NLRP3 pathway driven by IGF1/ROS-mediated AKT/GSK3ß signals. This study provides a valuable experimental basis for the prevention and treatment of coal workers' pneumoconiosis. Illustration of the overall research idea of this study: IGF1 stimulates coal dust nanoparticles induced pulmonary fibrosis by promoting inflammation and EMT via the NF-κB/NLRP3 pathway driven by ROS-mediated AKT/GSK3ß signals.

6.
Proc Natl Acad Sci U S A ; 119(44): e2213236119, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36306324

RESUMO

Tumor-derived extracellular vesicles (T-EVs) represent valuable markers for tumor diagnosis and treatment guidance. However, nanoscale sizes and the low abundance of marker proteins of T-EVs restrict interfacial affinity reaction, leading to low isolation efficiency and detection sensitivity. Here, we engineer a fluid nanoporous microinterface (FluidporeFace) in a microfluidic chip by decorating supported lipid bilayers (SLBs) on nanoporous herringbone microstructures with a multiscale-enhanced affinity reaction for efficient isolation of T-EVs. At the microscale level, the herringbone micropattern promotes the mass transfer of T-EVs to the surface. At the nanoscale level, nanoporousity can overcome boundary effects for close contact between T-EVs and the interface. At the molecular level, fluid SLBs afford clustering of recognition molecules at the binding site, enabling multivalent binding with an ∼83-fold increase of affinity compared with the nonfluid interface. With the synergetic enhanced mass transfer, interface contact, and binding affinity, FluidporeFace affords ultrasensitive detection of T-EVs with a limit of detection of 10 T-EVs µL-1, whose PD-L1 expression levels successfully distinguish cancer patients from healthy donors. We expect this multiscale enhanced interfacial reaction strategy will inspire the biosensor design and expand liquid biopsy applications, especially for low-abundant targets in clinical samples.


Assuntos
Técnicas Biossensoriais , Vesículas Extracelulares , Nanoporos , Neoplasias , Humanos , Vesículas Extracelulares/metabolismo , Microfluídica , Neoplasias/diagnóstico , Neoplasias/metabolismo
7.
Front Immunol ; 13: 1026898, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36311793

RESUMO

Purpose: To emphasize the importance of tumor-associated macrophages (TAMs) in tumor immunity and to describe the ways in which extracts from Traditional Chinese Medicine (TCM) achieve tumor therapy by modulating macrophages. Significance: By summarizing these available data, this review focused on TAMs and TCM and can build the foundation for future research on antitumor therapeutics. Methods: In this review, we summarized the key functions of TAMs in cancer development and overviewed literature on TCM targeting TAMs together with other immune cells aiming to enhance antitumor immunity. Conclusions: With an indispensable role in antitumor immunity, TAMs contribute to tumor progression, migration, invasion, angiogenesis, lymphangiogenesis, and immunosuppressive microenvironment. In recent years, TCM has gradually gained attention as a potential antitumor adjunctive therapy in preclinical and clinical trials. TCM is also a regulator of cytokine secretion and cell surface molecule expression in balancing the tumor microenvironment (TME), especially macrophage activation and polarization. Therefore, it is believed that TCM could serve as modifiers with immunomodulatory capability.


Assuntos
Medicina Tradicional Chinesa , Neoplasias , Humanos , Macrófagos Associados a Tumor , Microambiente Tumoral , Neoplasias/patologia , Macrófagos
8.
Respir Res ; 23(1): 197, 2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35906696

RESUMO

BACKGROUND: The characteristics of coal dust (CD) particles affect the inhalation of CD, which causes coal worker's pneumoconiosis (CWP). CD nanoparticles (CD-NPs, < 500 nm) and micron particles (CD-MPs, < 5 µm) are components of the respirable CD. However, the differences in physicochemical properties and pulmonary toxicity between CD-NPs and CD-MPs remain unclear. METHODS: CD was analyzed by scanning electron microscopy, Malvern nanoparticle size potentiometer, energy dispersive spectroscopy, infrared spectroscopy, and electron paramagnetic resonance spectroscopy. CCK-8 assay, ELISA, transmission electron microscope, JC-1 staining, reactive oxygen species activity probe, calcium ion fluorescent probe, AO/EB staining, flow cytometry, and western blot were used to determine the differences between CD-NPs and CD-MPs on acute pulmonary toxicity. CCK-8, scratch healing and Transwell assay, hematoxylin-eosin and Masson staining, immunohistochemistry, immunofluorescence, and western blot were applied to examine the effects of CD-NPs and CD-MPs on pneumoconiosis. RESULTS: Analysis of the size distribution of CD revealed that the samples had been size segregated. The carbon content of CD-NPs was greater than that of CD-MPs, and the oxygen, aluminum, and silicon contents were less. In in vitro experiments with A549 and BEAS-2B cells, CD-NPs, compared with CD-MPs, had more inflammatory vacuoles, release of pro-inflammatory cytokines (IL-6, IL-1ß, TNFα) and profibrotic cytokines (CXCL2, TGFß1), mitochondrial damage (reactive oxygen species and Ca2+ levels and decreased mitochondrial membrane potential), and cell death (apoptosis, pyroptosis, and necrosis). CD-NPs-induced fibrosis model cells had stronger proliferation, migration, and invasion than did CD-MPs. In in vivo experiments, lung coefficient, alveolar inflammation score, and lung tissue fibrosis score (mean: 1.1%, 1.33, 1.33) of CD-NPs were higher than those of CD-MPs (mean: 1.3%, 2.67, 2.67). CD-NPs accelerated the progression of pulmonary fibrosis by upregulating the expression of pro-fibrotic proteins and promoting epithelial-mesenchymal transition. The regulatory molecules involved were E-cadherin, N-cadherin, COL-1, COL-3, ZO-1, ZEB1, Slug, α-SMA, TGFß1, and Vimentin. CONCLUSIONS: Stimulation with CD-NPs resulted in more pronounced acute and chronic lung toxicity than did stimulation with CD-MPs. These effects included acute inflammatory response, mitochondrial damage, pyroptosis, and necrosis, and more pulmonary fibrosis induced by epithelial-mesenchymal transition.


Assuntos
Carvão Mineral , Fibrose Pulmonar , Carvão Mineral/toxicidade , Poeira , Humanos , Inflamação , Necrose , Fibrose Pulmonar/metabolismo , Espécies Reativas de Oxigênio
9.
BMC Cancer ; 22(1): 778, 2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35840921

RESUMO

A major challenge in the treatment of liver cancer is that a large proportion of patients fail to achieve long-term disease control, with death from liver cancer cell migration and invasion. Acid-sensitive ion channel 1α (ASIC1α) is involved in the migration, invasion, and proliferation of liver cancer cells. Therefore, we explored the mechanism of ASIC1α-mediated liver cancer cell migration and invasion. We determined the levels of ASIC1α by western blotting and immunofluorescence in HepG2 and SK-Hep1 cells cultured in various acidic conditions. In addition, wound healing assay, transwell invasion assay, and MTT assay were conducted to assess the migration, invasion, and proliferation abilities of liver cancer cells. Western blotting was conducted to determine the levels of MMP2, MMP9, ASIC1α, p-PI3Kp85, t-PI3Kp85, p-AKT(Ser473), t-AKT, p-mTOR (Ser2448), t-mTOR. We first found that the levels of ASIC1α in the HepG2 and SK-Hep1 cells in acidic conditions (pH 6.5) were significantly increased. Inhibition and knockdown of ASIC1α down-regulated MMP-2/9 expression and inhibited the migration, invasion, and proliferation of HepG2 and SK-Hep1 cells; overexpression of ASIC1α had the opposite effect. We further demonstrated that ASIC1α up-regulates MMP-2/9 via activation of the PI3K/AKT/mTOR pathway, thereby promoting migration, invasion, and proliferation of liver cancer cells. Overexpression of MMP-2/9 and activation of AKT reversed these effects on liver cancer cells caused by inhibition of ASIC1α. We conclude that ASIC1α can regulate migration, invasion, and proliferation of liver cancer cells through the MMP-2/9/PI3K/AKT/mTOR pathway. These observations may provide a new reference for liver cancer chemotherapy.


Assuntos
Canais Iônicos Sensíveis a Ácido , Neoplasias Hepáticas , Metaloproteinase 2 da Matriz , Metaloproteinase 9 da Matriz , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Serina-Treonina Quinases TOR , Canais Iônicos Sensíveis a Ácido/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Invasividade Neoplásica , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
10.
J Colloid Interface Sci ; 624: 555-563, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35688095

RESUMO

Silicon (Si) anode is the most promising alternative for next generation lithium-ion batteries (LIBs) owing to large theoretical capacity, low working voltage and abundant natural resources. However, tremendous volume change of Si during the (de)lithiation processes causes repetitive formation of solid electrolyte interphase (SEI) layers, loss of electrical contact and electrodes pulverization, limiting its commercial application. Herein, we fabricate an interconnected hollow Si-C nanospheres/graphite composite via a facile and scalable approach. Notably, hollow Si-C nanospheres and graphite are homogeneously combined by using the surfactants as surface modifiers of graphite and introducing carbon dioxide (CO2) into magnesiothermic reduction reaction, resulting in the enhanced compatibility between hollow Si-C nanospheres and graphite, and the well-established electrical conductive network. The resultant Si-C nanospheres/graphite composite anode with carbon content of 59 wt% delivers a large reversible specific capacity of 662 mAh g-1 and a high capacity retention of 65.7% at 0.5 A g-1 after 200 cycles. Such excellent rate performance and superior cycling performance are attributed to high electrical conductivity and buffering effect of graphite, superior compatibility between hollow Si-C spheres and graphite, uniform distribution of both Si-C nanospheres with a unique hollow architecture and graphite flakes inside the composites and well-established interconnected electrical conductive carbon networks, which can effectively alleviate Si volume expansion and maintain good electrical contact during cycling. This strategy provides insights into designing Si-based anodes for practical LIBs.

11.
Animals (Basel) ; 12(8)2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35454262

RESUMO

To retrospectively evaluate the effectiveness and outcome of lamellar keratoplasty using acellular bioengineering cornea (BioCorneaVetTM) for the treatment of feline corneal sequestrum (FCS). The medical records of cats diagnosed with FCS that underwent lamellar keratoplasty with BioCorneaVetTM between 2018 and 2021 with a minimum of 3 months of follow-up were reviewed. Follow-up examinations were performed weekly for 3 months, and then optical coherence tomography (OCT) examination was performed on select patients at 0, 3, 6, and 12 months post-operatively. A total of 61 cats (30 left eyes and 32 right eyes) were included. The Persian breed was overrepresented, 48/61 (78.69%). Four different thicknesses of acellular bioengineering cornea were used (200, 300, 400, or 450 microns), and the mean graft size was 8.23 mm (range, 5.00-12.00 mm). Minor complications were composed of partial dehiscence, and protrusion of the graft occurred in 7/62 eyes (11.29%). The median postoperative follow-up was 12.00 months (range, 3-41 months). A good visual outcome was achieved in 60/62 eyes (96.77%), and a mild to moderate corneal opacification occurred in 2/62 (3.23%). No recurrence of corneal sequestrum was observed. From the results, lamellar keratoplasty using acellular bioengineering cornea (BioCorneaVetTM) is an effective treatment for FCS, providing a good tectonic support and natural collagen framework, and resulting in satisfactory visual and cosmetic effects.

12.
J Cell Mol Med ; 26(10): 2777-2792, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35426224

RESUMO

Multidrug resistance is the main obstacle to curing hepatocellular carcinoma (HCC). Acid-sensing ion channel 1a (ASIC1a) has critical roles in all stages of cancer progression, especially invasion and metastasis, and in resistance to therapy. Epithelial to mesenchymal transition (EMT) transforms epithelial cells into mesenchymal cells after being stimulated by extracellular factors and is closely related to tumour infiltration and resistance. We used Western blotting, immunofluorescence, qRT-PCR, immunohistochemical staining, MTT, colony formation and scratch healing assay to determine ASIC1a levels and its relationship to cell proliferation, migration and invasion. ASIC1a is overexpressed in HCC tissues, and the amount increased in resistant HCC cells. EMT occurred more frequently in drug-resistant cells than in parental cells. Inactivation of ASIC1a inhibited cell migration and invasion and increased the chemosensitivity of cells through EMT. Overexpression of ASIC1a upregulated EMT and increased the cells' proliferation, migration and invasion and induced drug resistance; knocking down ASIC1a with shRNA had the opposite effects. ASIC1a increased cell migration and invasion through EMT by regulating α and ß-catenin, vimentin and fibronectin expression via the AKT/GSK-3ß/Snail pathway driven by TGFß/Smad signals. ASIC1a mediates drug resistance of HCC through EMT via the AKT/GSK-3ß/Snail pathway.


Assuntos
Canais Iônicos Sensíveis a Ácido , Carcinoma Hepatocelular , Transição Epitelial-Mesenquimal , Neoplasias Hepáticas , Canais Iônicos Sensíveis a Ácido/genética , Canais Iônicos Sensíveis a Ácido/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular , Transição Epitelial-Mesenquimal/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Neoplasias Hepáticas/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Fatores de Transcrição da Família Snail/genética , Fatores de Transcrição da Família Snail/metabolismo , Fator de Crescimento Transformador beta/metabolismo
13.
J Mol Med (Berl) ; 100(4): 585-598, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35122106

RESUMO

Sorafenib acquired drug resistance during the treatment of hepatocellular carcinoma (HCC) reduces the efficacy of the drug. The immune escape effect induced by PD-L1 is largely associated with drug resistance of HCC. However, the regulated mechanism of PD-L1 is unclear. This research aimed to clarify the control mechanism of PD-L1. c-Met was found abnormally highly expressed in Huh-7SR with high PD-L1 expression. In addition, c-Met, as the upstream target molecule of PD-L1, promoted the proliferation and migration of HCC in vitro and in vivo. We also found that c-Met activated the MAPK signaling pathway and the downstream NF-κBp65 transcription factor, which interacts with the proximal region of the PD-L1 promoter to promote PD-L1 expression. In conclusion, c-Met regulates the transcription of PD-L1 through the MAPK/NF-κBp65 pathway, thereby promoting the progress of HCC. The role of c-Met and PD-L1 in HCC needs to be further studied, but it is a potential target for the treatment of HCC. KEY MESSAGES: In the study, it was found that c-Met is also abnormally highly expressed in Huh-7SR with high PD-L1 expression and can promote the development of HCC in vitro and in vivo. PD-L1 and c-Met expression levels are positively correlated. In the follow-up mechanism study, we found that c-Met activated the MAPK signaling pathway and subsequently activated the downstream NF-κBp65 transcription factor, which interacts with the proximal region of the PD-L1 promoter to promote PD-L1 expression. Our study found that c-Met regulates the transcription of PD-L1 through the MAPK/NF-κBp65 pathway, thereby promoting the progress of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Proteínas Proto-Oncogênicas c-met , Fatores de Transcrição
14.
Toxicol Mech Methods ; 32(2): 87-96, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34396909

RESUMO

Aflatoxin B1 (AFB1), a kind of mycotoxin, exerts its cytotoxicity by increasing the oxidative damage of target organs, especially the liver. In vivo and in vitro experiments were carried out to elucidate the toxic mechanism of AFB1. The results of MTT, cloning-formation, flow cytometry, immunocytochemistry, Reverse transcription PCR (RT-PCR) and western blot showed that AFB1 activated NOX2 gp91 phox, inhibited proliferation and migration, and blocked cell cycle at G0/G1 period of HHL-5 cells. Autophagy promoted the repair of NOX2-dependent DNA damage. NOX2/gp91 phox mainly activates MEK/ERK pathway and then up-regulates autophagy. In vivo experiments have shown that AFB1 (0.75 mg/kg daily orally, 4 weeks) had no significant changes in the size and shape of the liver in mice. However, these treatments lead to structural abnormalities of hepatocytes and DNA damage. In summary, AFB1 caused intracellular oxidative stress and DNA damage, NOX2/gp91-phox activates the MEK/ERK pathway, and upregulated autophagy to promote the repair of DNA damage. We concluded that by increasing the level of autophagy, the ability of anti-AFB1 toxicity of liver can be increased.


Assuntos
Aflatoxina B1 , Dano ao DNA , Aflatoxina B1/toxicidade , Animais , Autofagia , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno , Estresse Oxidativo
15.
Front Pharmacol ; 12: 678865, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34504423

RESUMO

Dendritic cells (DCs) are the most potent professional antigen-presenting cells (APCs) that mediate T-cell immune responses. Breast cancer is one of the most commonly diagnosed diseases and its mortality rate is higher than any other cancer in both humans and canines. Plantain polysaccharide (PLP), extracted from the whole plant of Plantago asiatica L., could promote the maturation of DCs. In this research, we found that PLP could upregulate the maturation of DCs both in vitro and in vivo. PLP-activated DCs could stimulate lymphocytes' proliferation and differentiate naive T cells into cytotoxic T cells. Tumor antigen-specific lymphocyte responses were enhanced by PLP and CIPp canine breast tumor cells lysate-pulsed DCs, and PLP and CIPp-cell-lysate jointly stimulated DCs cocultured with lymphocytes having the great cytotoxicity on CIPp cells. In the 4T1 murine breast tumor model, PLP could control the size of breast tumors and improve immunity by recruiting DCs, macrophages, and CD4+ and CD8+ T cells in the tumor microenvironment. These results indicated that PLP could achieve immunotherapeutic effects and improve immunity in the breast tumor model.

16.
J Biomed Nanotechnol ; 17(8): 1690-1698, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34544545

RESUMO

The metabolic product of type I collagen synthesis, intact procollagen type I N propeptide (intact PINP), is a potential marker of bone formation and osteoporosis, which is not affected by kidney function. We sought to establish a chemiluminescent immunoassay method for the detection of serum intact PINP with previously prepared paired monoclonal antibodies and to evaluate the diagnostic value of the assay in osteoporosis. Using the capture molecule and monoclonal antibody as detection molecule, a diagnostic reagent was developed to detect intact PINP in serum with magnetic nanosphere carriers by the chemiluminescence method, and its analytical performance in the laboratory was evaluated. Serum intact PINP was measured in 142 healthy people and 115 osteoporosis patients. Results were matched with results of a similar test kit, Roche total PINP Elecsys Chemiluminescent Immunoassay Assay. Compared with the performance of the Roche PINP assay product, our method had higher sensitivity (0.02 ng/mL), wider linear range (0.02-1500 ng/mL), and anti-interference. Serum intact PINP values in osteoporosis patients were significantly higher than in healthy subjects (p < 0.001). Our method had good consistency compared with the Roche PINP assay (r = 0.9794). This chemiluminescence method for detecting serum intact PINP (CLIA-intact PINP) with magnetic nanosphere carrier technology meets the requirements of a clinical testing reagent and is expected to have clinical application after further evaluation and can compete with expensive imported kits on the market.


Assuntos
Colágeno Tipo I , Nanosferas , Biomarcadores , Humanos , Imunoensaio , Luminescência , Fragmentos de Peptídeos , Pró-Colágeno , Tecnologia
17.
Adv Sci (Weinh) ; 8(20): e2102070, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34473422

RESUMO

Controllable assembly and disassembly of recognition interface are vital for bioanalysis. Herein, a strategy of dynamic manipulation of trapping force by engineering a dynamic and reversible immunoaffinity microinterface (DynarFace) in a herringbone chip (DynarFace-Chip) for liquid biopsy is proposed. The DynarFace is assembled by magnetically attracting immunomagnetic beads (IMBs) on chip substrate, with merits of convenient operation and reversible assembly. The DynarFace allows accumulating attachment of IMBs on circulating rare cell (CRC) surfaces during hydrodynamically enhanced interface collision, where accumulatively enhanced magnetic trapping force improves capture efficiency toward CRCs with medium expression of biomarkers from blood samples by 134.81% compared with traditional non-dynamic interfaces. Moreover, magnet withdrawing-induced disappearance of trapping force affords DynarFace disassembly and CRC release with high efficiency (>98%) and high viability (≈98%), compatible with downstream in vitro culture and gene analysis of CRCs. This DynarFace strategy opens a new avenue to accumulated capture and reversible release of CRCs, holding great potential for liquid biopsy-based precision medicine.


Assuntos
Biomarcadores Tumorais/sangue , Neoplasias/sangue , Células Neoplásicas Circulantes , Linhagem Celular Tumoral , Separação Celular/métodos , Sobrevivência Celular/genética , Humanos , Separação Imunomagnética/métodos , Biópsia Líquida , Microfluídica , Neoplasias/genética , Neoplasias/patologia , Medicina de Precisão , Trofoblastos/patologia
18.
Toxicol Mech Methods ; 31(8): 589-599, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34233590

RESUMO

OBJECTIVE: Epithelial mesenchymal transition (EMT) and inflammation have been identified as carcinogenic agents. This study aims to investigate whether inhibition of trichloroethylene (TCE) associated hepatocellular carcinoma (HCC) by curcumin is associated with inflammation and EMT. METHODS: In the current study, TCE sub-chronic cell model was induced in vitro, and the effects of TCE on cell proliferation, migration, invasion, and expression of functional proteins were verified by Western blot, MTT, clone formation, wound healing, Transwell. The detoxification effect of curcumin on TCE was explored by a mouse tumor-bearing experiment. RESULTS: TCE induces hepatocyte migration, colony formation, and EMT in vitro. In vivo studies have shown that curcumin significantly reduces the mortality of mice and control the occurrence and size of liver tumors by inhibiting the IL-6/STAT3 signaling pathway. In vitro, curcumin inhibits the proliferation of HepG2 cells as determined by MTT assay. In addition, curcumin significantly inhibited the protein expression of IL-6R, STAT3, snail, survivin, and cyclin D1 in THLE-2 and HepG2 cells induced by IL-6. CONCLUSION: Curcumin has anti-inflammatory and anti-proliferative effects, and inhibits the development of HCC induced by TCE by reversing IL-6/STAT3 mediated EMT.


Assuntos
Carcinoma Hepatocelular , Curcumina , Neoplasias Hepáticas , Tricloroetileno , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células , Curcumina/farmacologia , Transição Epitelial-Mesenquimal , Humanos , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/tratamento farmacológico , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Tricloroetileno/toxicidade
19.
Front Vet Sci ; 7: 580530, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33263014

RESUMO

Background: Canine mammary carcinoma is common in female dogs, and its poor prognosis remains a serious clinical challenge, especially in developing countries. Benzyl isothiocyanate (BITC) has attracted great interest because of its inhibitory effect against tumor activity. However, its effect and the underlying mechanisms of action in canine mammary cancer are not well-understood. Here, we show that BITC suppresses mammary tumor growth, both in vivo and in vitro, and reveal some of the potential mechanisms involved. Methods: The effect of BITC on canine mammary cancer was evaluated on CIPp and CMT-7364, canine mammary carcinoma lines. The cell lines were treated with BITC and then subjected to wound healing and invasion assays. Cell cycles and apoptosis were measured using flow cytometry; TUNEL assay; immunohistochemistry (IHC) for caspase 3, caspase 9, and cyclin D1; hematoxylin and eosin (H&E) staining; and/or quantitative polymerase chain reaction (qPCR). Results: BITC showed a strong suppressive effect in both CIPp and CMT-7364 cells by inhibiting cell growth in vitro; these effects were both dose- and time-dependent. BITC also inhibited migration and invasion of CIPp and CMT-7364 cells. BITC induced G2 arrest and apoptosis, decreasing tumor growth in nude mice by downregulation of cyclin B1 and Cdk1 expression. Conclusion: BITC suppressed both invasion and migration of CIPp and CMT-7364 cells and induced apoptosis. BITC inhibited canine mammary tumor growth by suppressing cyclinB1 and Cdk1 expression in nude mice.

20.
Talanta ; 218: 121179, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32797926

RESUMO

We here report a double amplification strategy to construct a fluorescence anisotropy sensor for microRNA analysis in practical biological samples. In this strategy, one target can trigger cyclic catalyzed hairpin assembly (CHA), with streptavidin incorporated as an amplifier of molar mass to enhance the signal intensity. The proposed strategy has a good linearity in the range of 5 pM - 0.5 nM with a detection limit down to 2.3 pM. More importantly, by using fluorescence anisotropy as the signal output, the strategy can be used directly for detection of miRNA in practical samples without any tedious sample pretreatment, holding the practical value in real biological systems.


Assuntos
Técnicas Biossensoriais , MicroRNAs , Polarização de Fluorescência , Limite de Detecção , MicroRNAs/genética , Estreptavidina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...