Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 14(4): e11295, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38660471

RESUMO

Among flowering plants, self-incompatibility is considered the most efficient system for avoiding self-fertilization. However, many self-incompatible plants have also evolved floral mechanisms to reduce sexual conflict. In China, some studies of Bulbophyllum have been reported to be self-incompatible and no fruit sets. However, we have observed relatively high fruit sets in Bulbophyllum funingense. Therefore, we speculated that if B. funingense is also self-incompatible, and it might present a floral mechanism to avoid sexual conflict. Natural fruit sets, pollinia removal and deposition rates were determined and breeding system was tested in a hand-pollination experiment. The pollination process and visiting frequency of pollinators and their behavior after escape from access were observed and recorded. Floral traits associated with pollination and pollinator size were measured. B. funingense was completely self-incompatible, the fruit sets of cross-pollination in 2 years were all more than 70%, and the natural fruit sets for 2 years were 1.70 ± 4.31% and 6.63 ± 5.29%, respectively. B. funingense did not produce strong odor or nectar, but produced a kind of secretions from its labellum that attracted flies. Calliphora vicina (Calliphoridae) was its only effective pollinator. When C. vicina licked the secretions, they were stuck in the access for a long time. Thus, when they escaped from access, they almost always flew quickly away from the inflorescence removing pollinia most of the times. In B. funingense, a floral mechanism improves pollinia transfer efficiency, reduces pollinia waste, promotes pollination success, reduces the incidence of self-pollination, and avoids sexual conflict to a certain extent.

2.
Front Plant Sci ; 14: 1168760, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37941678

RESUMO

Disentangling community assembly processes is crucial for fully understanding the function of microbiota in agricultural ecosystems. However, numerous plant microbiome surveys have gradually revealed that stochastic processes dominate the assembly of the endophytic root microbiota in conflict with strong host filtering effects, which is an important issue. Resolving such conflicts or inconsistencies will not only help accurately predict the composition and structure of the root endophytic microbiota and its driving mechanisms, but also provide important guidance on the correlation between the relative importance of deterministic and stochastic processes in the assembly of the root endophytic microbiota, and crop productivity and nutritional quality. Here, we propose that the inappropriate division of dispersal limitation may be the main reason for such inconsistency, which can be resolved after the proportion of dispersal limitation is incorporated into the deterministic processes. The rationality of this adjustment under the framework of the formation of a holobiont between the microbiome and the plant host is herein explained, and a potential theoretical framework for dynamic assembly patterns of endophytic microbiota along the soil-plant continuum is proposed. Considering that the assembly of root endophytic microbiota is complicated, we suggest caution and level-by-level verification from deterministic processes to neutral components to stochastic processes when deciding on the attribution of dispersal limitation in the future to promote the expansion and application of microbiome engineering in sustainable agricultural development based on community assembly patterns.

3.
Sci Total Environ ; 893: 164827, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37321490

RESUMO

Understanding the tripartite consortium of crop, mycobiome, and environment is necessary to advance smart farming. Owing to their life cycle of hundreds of years, tea plants are excellent models for studying these entwined relationships; however, observations on this globally important cash crop with numerous health benefits are still rudimentary. Here, the fungal taxa along the soil-tea plant continuum in tea gardens of different ages in famous high-quality tea-growing regions in China were characterized using DNA metabarcoding. Using machine learning, we dissected the spatiotemporal distribution, co-occurrence patterns, assembly, and their associations in different compartments of tea-plant mycobiomes, and further explored how these potential interactions were driven by environmental factors and tree age, and how they influenced the market prices of tea. The results revealed that Compartment niche differentiation was the key driving force behind variation in the tea-plant mycobiome. The mycobiome of roots had the highest specific proportion and convergence and almost did not overlap with the soil. The enrichment ratio of developing leaves to root mycobiome increased with increasing tree age, while mature leaves showed the highest value in the Laobanzhang (LBZ) tea garden with top market prices and displayed the strongest depletion effect on mycobiome association along the soil-tea plant continuum. The balance between determinism and stochasticity in the assembly process was co-driven by compartment niches and life cycle variation. Fungal guild analysis showed that altitude indirectly affected market prices of tea by mediating the abundance of the plant pathogen. The relative importance of plant pathogen and ectomycorrhizae could be used to assess the age of tea. Biomarkers were mainly distributed in soil compartments, and Clavulinopsis miyabeana, Mortierella longata, and Saitozyma sp. may affect the spatiotemporal dynamics of tea-plant mycobiomes and their ecosystem services. Soil properties (mainly total potassium) and tree age indirectly affected the developing leaves via positively influencing the mycobiome of mature leaves. In contrast, the climate directly and significantly drove the mycobiome composition of the developing leaves. Moreover, the proportion of negative correlations in the co-occurrence network positively regulated tea-plant mycobiome assembly, which significantly affected the market prices of tea in the structural equation model with network complexity as hub. These findings indicate that mycobiome signatures play pivotal roles in the adaptive evolution and fungal disease control of tea plants and can help develop better agricultural practices that focus on both plant health and financial profits, and provide a new strategy for assessing tea quality grade and age.


Assuntos
Ecossistema , Micobioma , Fungos , Micobioma/genética , Folhas de Planta , Raízes de Plantas/microbiologia , Plantas , Solo , Microbiologia do Solo , Chá , Árvores/microbiologia
4.
Front Plant Sci ; 14: 1114105, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36968353

RESUMO

Orchids produce large numbers of dust-like seeds that rely heavily on orchid mycorrhizal fungi (OMFs) for germination. Using OMFs to facilitate orchid proliferation is considered an effective method for orchid conservation but still presents challenges in practice. In this study, orchid seed-fungus complexes, in which orchid seeds and fungal mycelia were embedded together to form granules, were developed as platforms to facilitate seed germination and seedling production. Overall, seedlings were produced by seed-fungus complexes for five orchid species with large variations in the percentages of seedlings produced among species/treatments. For the different fungal treatments in Dendrobium officinale, Sebacinales LQ performed much better than the other fungal strains. At 90 days after sowing, 75.8±2.6% seedlings were produced in the LQ treatment, which was significantly higher than in the Tulasnella sp. JM (22.0±3.0%) and Tulasnella sp. TPYD-2 (5.3±1.0%) treatments, as well as in the LQ and TPYD-2 cocultured treatment (40.4±3.2%), while no seedlings were formed in the Tulasnella sp. SSCDO-5 or control treatments. For the other four orchid species, only one compatible fungus for each species was used, and the percentages of seedlings in epiphytic Dendrobium devonianum (67.2±2.9%) and D. nobile (38.9±2.8%) were much higher than those in terrestrial Paphiopedilum spicerianum (2.9±1.1%) and Arundina graminifolia (6.7±2.1%) at 90 days after sowing. Adding 1% polymer water-absorbent resin to the seed-fungus complexes of D. officinale seeds with fungal strain Sebacinales LQ significantly increased seedling formation, while other additional substances showed negative effects on seedling formation. For the storage of seed-fungus complexes, it is recommended to store the seed-fungus complexes in valve bags at room temperature for a short time and at a low temperature of 4°C for no more than 30 days. As a platform for symbiotic seed germination, the seed-fungus complex can facilitate seed germination, produce seedlings and support subsequent seedling growth, and its seedling productivity depends on seed germination characteristics, seed viability, and the efficiency of fungi. Seed-fungus complexes have great potential to be used as propagules in orchid conservation.

5.
Plant Physiol ; 192(3): 2554-2568, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-36988071

RESUMO

Mycorrhizae are ubiquitous symbioses established between fungi and plant roots. Orchids, in particular, require compatible mycorrhizal fungi for seed germination and protocorm development. Unlike arbuscular mycorrhizal fungi, which have wide host ranges, orchid mycorrhizal fungi are often highly specific to their host orchids. However, the molecular mechanism of orchid mycorrhizal symbiosis is largely unknown compared to that of arbuscular mycorrhizal and rhizobial symbiosis. Here, we report that an endophytic Sebacinales fungus, Serendipita indica, promotes seed germination and the development of protocorms into plantlets in several epiphytic Epidendroideae orchid species (6 species in 2 genera), including Dendrobium catenatum, a critically endangered orchid with high medicinal value. Although plant-pathogen interaction and high meristematic activity can induce the hypoxic response in plants, it has been unclear whether interactions with beneficial fungi, especially mycorrhizal ones, also involve the hypoxic response. By studying the symbiotic relationship between D. catenatum and S. indica, we determined that hypoxia-responsive genes, such as those encoding alcohol dehydrogenase (ADH), are highly induced in symbiotic D. catenatum protocorms. In situ hybridization assay indicated that the ADH gene is predominantly expressed in the basal mycorrhizal region of symbiotic protocorms. Additionally, the ADH inhibitors puerarin and 4-methylpyrazole both decreased S. indica colonization in D. catenatum protocorms. Thus, our study reveals that S. indica is widely compatible with orchids and that ADH and its related hypoxia-responsive pathway are involved in establishing successful symbiotic relationships in germinating orchids.


Assuntos
Basidiomycota , Dendrobium , Micorrizas , Orchidaceae , Simbiose , Dendrobium/genética , Sementes , Micorrizas/fisiologia , Basidiomycota/fisiologia , Orchidaceae/genética , Filogenia
6.
J Fungi (Basel) ; 8(10)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36294601

RESUMO

Using orchid mycorrhizal fungi (OMFs) to facilitate orchid proliferation is considered an effective method of orchid conservation. Based on the success of using in situ seedling baiting to obtain plant growth-promoting fungi in our previous study, in this study, we developed the method of using ex situ seedling baiting to capture seedling-associated fungi from Dendrobium officinale. We collected substrates (e.g., litters, barks and mosses) from six original habitats of D. officinale in different geographical locations in China, and then, transplanted in vitro-produced seedlings of D. officinale into the substrates. After cultivation for 75 days, it was obvious that fungi colonized the seedling roots and formed large numbers of pelotons in all six groups. From these seedling roots, a total of 251 fungal strains, which were divided into 16 OMF and 11 non-OMF species, were successfully isolated. The 16 OMFs included 13 Tulasnella and 3 Serendipitaceae species. The fungal species isolated from the different groups (original habitat sources) were not identical, but the dominant OMFs with high isolation frequencies (more than 10 times) were commonly isolated from more than four original sources. Among the 11 non-OMFs, Fusarium oxysporum TP-18 and Muscodor sp. TP-26 were the dominant endophytes. Fusarium oxysporum is a common endophyte associated with many orchid species, including D. officinale. The results suggest that ex situ seedling baiting is an easy and efficient approach to obtaining seedling-associated fungi for this species and could be performed for other over-collected species, especially orchids for which wild plants have disappeared in the field but their original habitats are known. This approach has great potential for application in OMF studies in the future.

7.
BMC Plant Biol ; 22(1): 375, 2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35906552

RESUMO

BACKGROUND: Orchids require specific mycorrhizal associations for seed germination. During symbiotic germination, the seed coat is the first point of fungal attachment, and whether the seed coat plays a role in the identification of compatible and incompatible fungi is unclear. Here, we compared the effects of compatible and incompatible fungi on seed germination, protocorm formation, seedling development, and colonization patterns in Dendrobium officinale; additionally, two experimental approaches, seeds pretreated with NaClO to change the permeability of the seed coat and fungi incubated with in vitro-produced protocorms, were used to assess the role of seed coat played during symbiotic seed germination. RESULTS: The two compatible fungi, Tulasnella sp. TPYD-2 and Serendipita indica PI could quickly promote D. officinale seed germination to the seedling stage. Sixty-two days after incubation, 67.8 ± 5.23% of seeds developed into seedlings with two leaves in the PI treatment, which was significantly higher than that in the TPYD-2 treatment (37.1 ± 3.55%), and massive pelotons formed inside the basal cells of the protocorm or seedlings in both compatible fungi treatments. In contrast, the incompatible fungus Tulasnella sp. FDd1 did not promote seed germination up to seedlings at 62 days after incubation, and only a few pelotons were occasionally observed inside the protocorms. NaClO seed pretreatment improved seed germination under all three fungal treatments but did not improve seed colonization or promote seedling formation by incompatible fungi. Without the seed coat barrier, the colonization of in vitro-produced protocorms by TPYD-2 and PI was slowed, postponing protocorm development and seedling formation compared to those in intact seeds incubated with the same fungi. Moreover, the incompatible fungus FDd1 was still unable to colonize in vitro-produced protocorms and promote seedling formation. CONCLUSIONS: Compatible fungi could quickly promote seed germination up to the seedling stage accompanied by hyphal colonization of seeds and formation of many pelotons inside cells, while incompatible fungi could not continuously colonize seeds and form enough protocorms to support D. officinale seedling development. The improvement of seed germination by seed pretreatment may result from improving the seed coat hydrophilicity and permeability, but seed pretreatment cannot change the compatibility of a fungus with an orchid. Without a seed coat, the incompatible fungus FDd1 still cannot colonize in vitro-produced protocorms or support seedling development. These results suggest that seed coats are not involved in symbiotic germination in D. officinale.


Assuntos
Dendrobium , Micorrizas , Orchidaceae , Dendrobium/microbiologia , Germinação , Plântula , Sementes , Simbiose
9.
Front Plant Sci ; 13: 823794, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35360307

RESUMO

Orchids highly rely on mycorrhizal fungi for seed germination, and compatible fungi could effectively promote germination up to seedlings, while incompatible fungi may stimulate germination but do not support subsequent seedling development. In this study, we compared the fungal colonization process among two compatible and two incompatible fungi during seed germination of Dendrobium officinale. The two compatible fungi, i.e., Tulasnella SSCDO-5 and Sebacinales LQ, originally from different habitats, could persistently colonize seeds and form a large number of pelotons continuously in the basal cells, and both fungi promoted seed germination up to seedling with relative effectiveness. In contrast, the two incompatible fungi, i.e., Tulasnella FDd1 and Tulasnella AgP-1, could not persistently colonize seeds. No pelotons in the FDd1 treatment and only a few pelotons in the AgP-1 treatment were observed; moreover, no seedlings were developed at 120 days after incubation in either incompatible fungal treatment. The pattern of fungal hyphae colonizing seeds was well-matched with the morphological differentiation of seed germination and seedling development. In the fungal cocultural experiments, for both orchids of D. officinale and Dendrobium devonianum, cocultures had slightly negative effects on seed germination, protocorm formation, and seedling formation compared with the monocultures with compatible fungus. These results provide us with a better understanding of orchid mycorrhizal interactions; therefore, for orchid conservation based on symbiotic seed germination, it is recommended that a single, compatible, and ecological/habitat-specific fungus can be utilized for seed germination.

10.
Bot Stud ; 63(1): 3, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35142915

RESUMO

BACKGROUND: Seed viability testing is essential in plant conservation and research. Seed viability testing determines the success of ex-situ conservation efforts, such as seed banking but commonly testing protocols of orchids lack consistency and accuracy, therefore, there is a need to select an appropriate and reliable viability test, especially when conducting comparative studies. Here, we evaluated the suitability of three seed viability tests, Evans blue test (EB), Fluorescein diacetate test (FDA) and Tetrazolium test (TTC), with and without sterilization, on seeds of 20 orchid species, which included five epiphytes and fifteen terrestrials, using both fresh seeds and seeds stored at - 18 ºC for 6 to 8 years. RESULTS: We found that sterilization and lifeform of seeds affected seed viability across all tests but the storage time was not an influential factor. Sterilization negatively affected seed viability under EB and FDA test conditions but increased the detection of viable seeds in the TTC test in both epiphytic and terrestrial species. The EB test, when administered without sterilization provided the highest viability results. Being non-enzymatic unlike TTC and FDA tests, as expected, the EB test was the most reliable with similar results between sterilized and not sterilized seeds for most epiphytic and terrestrial species as well as when compared between groups. CONCLUSIONS: The lifeform of the species and seed sterilization prior to testing are important influential factors in orchid seed viability testing. Since EB test was found to be reliable we recommend the EB test for seed viability assessment in orchids rather than the less reliable but commonly used TTC test, or the FDA test, which require more expensive and sophisticated instrumentation. Since storage time was not an influential factor in orchid seed viability testing, the recommendations of this study can be used for both fresh as well as long-term stored orchid seeds. This is helpful for research and especially for conservation measures such as seed banking. However, due to the species specificity of the bio-physiology of orchids, we call for comprehensive viability test assessment in the hyper diverse orchid family to be extended to a greater number of species to facilitate efficient conservation and research.

11.
Int J Mol Sci ; 24(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36614105

RESUMO

Fungi with orchid roots have been increasingly proven to play important roles in orchid growth, spatial distribution, and coexistence of natural communities. Here, we used 454 amplicon pyrosequencing with two different primer combinations to investigate the spatial variations in the community of OMF and endophytic fungi associates within the roots of four co-occurring Habenaria species. The results showed that all investigated Habenaria species were generalists and the different fungi communities may contribute to the spatial separation of the four Habenaria species. Firstly, the fungal OTUs identified in the roots of the four species overlapped but their presence differed amongst species and numerous distinct OMF families were unique to each species. Second, NMDS clustering showed samples clustered together based on associated species and PERMANOVA analyses indicated that fungi communities in the roots differed significantly between the Habenaria species, both for all endophytic fungi communities and for OMF communities. Third, the network structure of epiphytic fungi was highly specialized and modular but demonstrated lowly connected and anti-nested properties. However, it calls for more soil nutrition and soil fungal communities' studies to elucidate the contribution of habitat-specific adaptations in general and mycorrhizal divergence.


Assuntos
Micorrizas , Orchidaceae , Humanos , Micorrizas/genética , Orchidaceae/microbiologia , Raízes de Plantas/microbiologia , Ecossistema , Solo , Filogenia , Especificidade da Espécie , Simbiose
12.
Ann Bot ; 129(3): 259-270, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-34718377

RESUMO

BACKGROUND: As in most land plants, the roots of orchids (Orchidaceae) associate with soil fungi. Recent studies have highlighted the diversity of the fungal partners involved, mostly within Basidiomycotas. The association with a polyphyletic group of fungi collectively called rhizoctonias (Ceratobasidiaceae, Tulasnellaceae and Serendipitaceae) is the most frequent. Yet, several orchid species target other fungal taxa that differ from rhizoctonias by their phylogenetic position and/or ecological traits related to their nutrition out of the orchid roots (e.g. soil saprobic or ectomycorrhizal fungi). We offer an evolutionary framework for these symbiotic associations. SCOPE: Our view is based on the 'Waiting Room Hypothesis', an evolutionary scenario stating that mycorrhizal fungi of land flora were recruited from ancestors that initially colonized roots as endophytes. Endophytes biotrophically colonize tissues in a diffuse way, contrasting with mycorrhizae by the absence of morphological differentiation and of contribution to the plant's nutrition. The association with rhizoctonias is probably the ancestral symbiosis that persists in most extant orchids, while during orchid evolution numerous secondary transitions occurred to other fungal taxa. We suggest that both the rhizoctonia partners and the secondarily acquired ones are from fungal taxa that have broad endophytic ability, as exemplified in non-orchid roots. We review evidence that endophytism in non-orchid plants is the current ecology of many rhizoctonias, which suggests that their ancestors may have been endophytic in orchid ancestors. This also applies to the non-rhizoctonia fungi that were secondarily recruited by several orchid lineages as mycorrhizal partners. Indeed, from our review of the published literature, they are often detected, probably as endophytes, in extant rhizoctonia-associated orchids. CONCLUSION: The orchid family offers one of the best documented examples of the 'Waiting Room Hypothesis': their mycorrhizal symbioses support the idea that extant mycorrhizal fungi have been recruited among endophytic fungi that colonized orchid ancestors.


Assuntos
Micorrizas , Orchidaceae , Endófitos , Orchidaceae/microbiologia , Filogenia , Simbiose , Salas de Espera
13.
Front Plant Sci ; 12: 646325, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34025694

RESUMO

Orchids form mycorrhizal symbioses with fungi in natural habitats that affect their seed germination, protocorm growth, and adult nutrition. An increasing number of studies indicates how orchids gain mineral nutrients and sometime even organic compounds from interactions with orchid mycorrhizal fungi (OMF). Thus, OMF exhibit a high diversity and play a key role in the life cycle of orchids. In recent years, the high-throughput molecular identification of fungi has broadly extended our understanding of OMF diversity, revealing it to be a dynamic outcome co-regulated by environmental filtering, dispersal restrictions, spatiotemporal scales, biogeographic history, as well as the distribution, selection, and phylogenetic spectrum width of host orchids. Most of the results show congruent emerging patterns. Although it is still difficult to extend them to all orchid species or geographical areas, to a certain extent they follow the "everything is everywhere, but the environment selects" rule. This review provides an extensive understanding of the diversity and ecological dynamics of orchid-fungal association. Moreover, it promotes the conservation of resources and the regeneration of rare or endangered orchids. We provide a comprehensive overview, systematically describing six fields of research on orchid-fungal diversity: the research methods of orchid-fungal interactions, the primer selection in high-throughput sequencing, the fungal diversity and specificity in orchids, the difference and adaptability of OMF in different habitats, the comparison of OMF in orchid roots and soil, and the spatiotemporal variation patterns of OMF. Further, we highlight certain shortcomings of current research methodologies and propose perspectives for future studies. This review emphasizes the need for more information on the four main ecological processes: dispersal, selection, ecological drift, and diversification, as well as their interactions, in the study of orchid-fungal interactions and OMF community structure.

14.
Front Plant Sci ; 12: 647114, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34025695

RESUMO

Orchid distribution and population dynamics are influenced by a variety of ecological factors and the formation of holobionts, which play key roles in colonization and ecological community construction. Seed germination, seedling establishment, reproduction, and survival of orchid species are strongly dependent on orchid mycorrhizal fungi (OMF), with mycorrhizal cheating increasingly observed in photosynthetic orchids. Therefore, changes in the composition and abundance of OMF can have profound effects on orchid distribution and fitness. Network analysis is an important tool for the study of interactions between plants, microbes, and the environment, because of the insights that it can provide into the interactions and coexistence patterns among species. Here, we provide a comprehensive overview, systematically describing the current research status of the effects of OMF on orchid distribution and dynamics, phylogenetic signals in orchid-OMF interactions, and OMF networks. We argue that orchid-OMF associations exhibit complementary and specific effects that are highly adapted to their environment. Such specificity of associations may affect the niche breadth of orchid species and act as a stabilizing force in plant-microbe coevolution. We postulate that network analysis is required to elucidate the functions of fungal partners beyond their effects on germination and growth. Such studies may lend insight into the microbial ecology of orchids and provide a scientific basis for the protection of orchids under natural conditions in an efficient and cost-effective manner.

15.
BMC Plant Biol ; 21(1): 187, 2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33874891

RESUMO

BACKGROUND: Most orchid species have been shown to be severely pollination limited, and the factors affecting reproductive success have been widely studied. However, the factors determining the reproductive success vary from species to species. Habenaria species typically produce nectar but exhibit variable fruit set and reproductive success among species. Here, we investigated the influence of the flowering plant density, inflorescence size, breeding system, and pollinator behaviour on the reproductive success of two rewarding Habenaria species. RESULTS: Our observations indicated that Habenaria limprichtii and H. petelotii co-occur in roadside verge habitats and present overlapping flowering periods. Both species were pollination limited, although H. limprichtii produced more fruits than H. petelotii under natural conditions during the 3-year investigation. H. petelotii individuals formed distinct patches along roadsides, while nearly all H. limprichtii individuals clustered together. The bigger floral display and higher nectar sugar concentration in H. limprichtii resulted in increased attraction and visits from pollinators. Three species of effective moths pollinated for H. limprichtii, while Thinopteryx delectans (Geometridae) was the exclusive pollinator of H. petelotii. The percentage of viable seeds was significantly lower for hand geitonogamy than for hand cross-pollination in both species. However, H. limprichtii may often be geitonogamously pollinated based on the behaviours of the pollinators and viable embryo assessment. CONCLUSIONS: In anthropogenic interference habitats, the behaviours and abundance of pollinators influence the fruit set of the two studied species. The different pollinator assemblages in H. limprichtii can alleviate pollinator specificity and ensure reproductive success, whereas the more viable embryos of natural fruit seeds in H. petelotii suggested reducing geitonogamy by pollinators in the field. Our results indicate that a quantity-quality trade-off must occur between species with different breeding strategies so that they can fully exploit the existing given resources.


Assuntos
Inflorescência/anatomia & histologia , Orchidaceae/fisiologia , Polinização , Ecossistema , Orchidaceae/anatomia & histologia , Densidade Demográfica , Reprodução , Especificidade da Espécie
16.
Am Nat ; 195(2): 275-283, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32017633

RESUMO

Orchids are globally distributed, a feature often attributed to their tiny dustlike seeds. They were ancestrally terrestrial but in the Eocene expanded into tree canopies, with some lineages later returning to the ground, providing an evolutionarily replicated system. Because seeds are released closer to the ground in terrestrial species than in epiphytic ones, seed traits in terrestrials may have been under selective pressure to increase seed dispersal efficiency. In this study, we test the expectations that seed airspace-a trait known to increase seed flotation time in the air-is (i) larger in terrestrial lineages and (ii) has increased following secondary returns to a terrestrial habit. We quantified and scored 20 seed traits in 121 species and carried out phylogenetically informed analyses. Results strongly support both expectations, suggesting that aerodynamic traits even in dust seeds are under selection to increase dispersal ability, following shifts in average release heights correlated with changes in habit.


Assuntos
Orchidaceae/anatomia & histologia , Dispersão de Sementes , Sementes/anatomia & histologia , Fenômenos Biomecânicos , Ecossistema , Orchidaceae/classificação , Filogenia , Vento
17.
PhytoKeys ; 138: 113-123, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31988606

RESUMO

Myanmar is known for its high species richness of genus Gastrochilus; however, most of them lack proper information for taxonomic revision. During four years of field investigation in Myanmar, two new distributional records were encountered, namely, G. arunachalensis and G. corymbosus and one species, i.e. G. pechei was rediscovered after its original description. The three species were not easy to interpret from the available original descriptions and types due to severely shrunk or poorly preserved specimens. Therefore, we hereby present more detailed illustrations and updated descriptions for these species, based on freshly collected materials.

18.
Mycorrhiza ; 29(5): 541-547, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31312918

RESUMO

We studied mycobionts from advanced seedlings and adult mycorrhizal roots of the terrestrial orchid Arundina graminifolia. Fungi were isolated, identified by ITS sequencing, and tested for their impact on seed germination, protocorm formation, and development of advanced seedlings (emergence of first leaf) in vitro. Among the six fungal species isolated, four were not standard orchid mycorrhizal fungi (Fusarium solani, Cylindrocarpon sp., Acremonium sp., and Phlebiopsis flavidoalba) and did not support germination beyond imbibition and greening of the seeds during a span of 35 days. Over the same time, one Tulasnella species isolated from adult mycorrhiza allowed protocorm formation but not further development. However, another Tulasnella species isolated from advanced seedlings facilitated development to the advanced seedling stage. Our results support (i) the inability of occasional orchid root colonizers to support late seed germination, and (ii) the growing literature showing that fungal associates can change over orchid development. Functionally, we show that mycorrhizal taxa isolated from advanced seedlings can be more efficient than those from adults in supporting germination in some species, leading to recommendations for ex situ orchid conservation.


Assuntos
Fungos/fisiologia , Micorrizas/fisiologia , Orchidaceae/microbiologia , Raízes de Plantas/microbiologia , Especificidade da Espécie
19.
J Microbiol ; 56(1): 42-48, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29299845

RESUMO

All orchids maintain an obligate relationship with mycorrhizal symbionts during seed germination. In most cases, germination-enhancing fungi have been isolated from roots of mature plants for conservation and cultivation purposes. To understand the germination biology of Dendrobium devonianum, an over-collected medicinal orchid, the seeds of D. devonianum were inoculated with a fungal strain (FDd1) isolated from naturally occurring protocorms of D. devonianum and two other germination-enhancing fungal strains (FDaI7 and FCb4) from D. aphyllum and Cymbidium mannii, respectively. The fungal strain was isolated from five protocorms of D. devonianum and identified as a species of the genus Epulorhiza. In germination trials, treatments with all of the three fungal strains showed a significant promoting effect on seed germination and protocorm formation, compared with the control treatment (no inoculation). However, FDd1 fungal strain showed the greatest effectiveness followed by FDaI7 and FCb4. For all inoculation and control treatments, seeds developed to protocorms regardless of the presence of illumination, whereas protocorms did not develop to seedlings unless illumination was provided. The results of our manipulative experiments confirmed the hypothesis that mycorrhizae associated with orchid seedlings are highly host-specific, and the degree of specificity may be life stagespecific under in vitro conditions. The specific mycorrhizal symbionts from protocorms can enhance restoration efforts and the conservation of orchids such as D. devonianum.


Assuntos
Basidiomycota/isolamento & purificação , Micorrizas/isolamento & purificação , Orchidaceae/microbiologia , Sementes/crescimento & desenvolvimento , Simbiose , Basidiomycota/classificação , Basidiomycota/genética , Basidiomycota/fisiologia , Germinação , Especificidade de Hospedeiro , Micorrizas/classificação , Micorrizas/genética , Micorrizas/fisiologia , Orchidaceae/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Plantas Medicinais/crescimento & desenvolvimento , Plantas Medicinais/microbiologia , Plântula/crescimento & desenvolvimento , Plântula/microbiologia , Sementes/microbiologia
20.
PLoS One ; 12(11): e0188594, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29176771

RESUMO

Reproductive isolation is a key feature that forms barriers to gene flow between distinct plants. In orchids, prezygotic reproductive isolation has been considered to be strong, because their associations with highly specific pollinators. In this study, the reproductive ecology and reproductive isolation of two sympatric Habenaria species, H. davidii and H. fordii, was investigated by floral phenology and morphology, hand-pollination experiments and visitor observation in southwest China. The two species were dependent on insects for pollination and completely self-compatible. A number of factors have been identified to limit gene flow between the two species and achieved full reproductive isolation. Ecogeographic isolation was a weak barrier. H. fordii and H. davidii had completely overlapped flowering periods, and floral morphology plays an important role in floral isolation. The two species shared the same hawkmoth pollinator, Cechenena lineosa, but the pollinaria of the two orchids were attached on different body parts of pollinators. Prezygotic isolation was not complete, but the interspecific pollination treatments of each species resulted in no seed sets, indicating that unlike many other orchid species, in which the postzygotic reproductive isolation is very weak or complete absence, the post-zygotic isolation strongly acted in the stage of seed production between two species. The results illustrate the reproductive isolation between two species involves multiple plant life-history stages and a variety of reproductive barriers can contribute to overall isolation.


Assuntos
Orchidaceae/fisiologia , Isolamento Reprodutivo , Animais , Ecossistema , Flores/anatomia & histologia , Frutas/fisiologia , Geografia , Inflorescência/anatomia & histologia , Insetos , Microscopia de Fluorescência , Tubo Polínico/crescimento & desenvolvimento , Polinização , Simpatria , Compostos Orgânicos Voláteis/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...