Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mater Chem B ; 12(9): 2313-2323, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38268450

RESUMO

As a multifunctional material, gallium-based liquid metal (LM) mixtures with metal particles dispersed in the LM environment display many excellent and intriguing properties. In this study, biomaterials were prepared by mixing Fe particles with LM for easily manageable photothermal or electromagnetic therapy and evaluated. Clinically, the fabricated 5%Fe/LM sample was injectable and radiopaque, which allowed its smooth delivery through a syringe to the target tissues, where it could help achieve clear imaging under CT. Meanwhile, because of the loading of Fe particles, the 5%Fe/LM possessed a magnetic property, implying a high manipulation capability. According to the experiments, the capsule containing 5%Fe/LM when placed in an isolated pig large intestine could move as desired to the designated position through an external magnet. Further, the biosafety and low toxicity of the 5%Fe/LM were confirmed by cytotoxicity tests in vitro, and the temperature changes at the interface between the 5%Fe/LM and intestinal tissue after near-infrared (NIR) laser irradiation were determined through theoretical modeling and numerical simulation data analysis. Due to the excellent photothermal and magnetothermal effects of LM, the temperature of the 5%Fe/LM injected into the rabbit abdominal cavity could significantly increase under NIR laser or alternating magnetic field (AMF) administration. As a novel functional biomaterial, the 5%Fe/LM exhibited promising potential for designated position movement and photothermal or magnetothermal therapy in the near future.


Assuntos
Gálio , Magnetoterapia , Animais , Coelhos , Suínos , Materiais Biocompatíveis , Campos Magnéticos
2.
Adv Mater ; 36(7): e2309999, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37931919

RESUMO

The classical Turing morphogenesis often occurs in nonmetallic solution systems due to the sole competition of reaction and diffusion processes. Here, this work conceives that gallium (Ga) based liquid metals (LMs) possess the ability to alloy, diffuse, and react with a range of solid metals (SMs) and thus should display Turing instability leading to a variety of nonequilibrium spatial concentration patterns. This work discloses a general mechanism for obtaining labyrinths, stripes, and spots-like stationary Turing patterns in the LM-SM reaction-diffusion systems (GaX-Y), taking the gallium indium alloy and silver substrate (GaIn-Ag) system as a proof of concept. It is only when Ga atoms diffuse over Y much faster than X while X reacts with Y preferentially, that Turing instability occurs. In such a metallic system, Ga serves as an inhibitor and X as an activator. The dominant factors in tuning the patterning process include temperature and concentration. Intermetallic compounds contained in the Turing patterns and their competitive reactions have also been further clarified. This LM Turing instability mechanism opens many opportunities for constructing microstructure systems utilizing condensed matter to experimentally explore the general morphogenesis process.

3.
Adv Mater ; 35(7): e2209392, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36416104

RESUMO

Room temperature liquid metals (LM) such as gallium (Ga) own the potential to react with specific materials which would incubate new application categories. Here, diverse self-organized ring patterns due to nonequilibrium reaction-diffusion and spreading-limitation of Ga-based LM clusters on gold (Au) film are reported, among which diffusion is the controlling step and the self-limiting oxide layer plays the role of kinetic barrier. Such phenomena, classically known as the Liesegang rings, mainly occur in electrolyte media. Unlike existing systems, the present periodic crystallization mechanism enables highly symmetric spatiotemporal periodic Liesegang rings on a smaller scale under ambient conditions. Typically, the Ga-Au and eutectic gallium-indium alloy (EGaIn)-Au reaction-diffusion-spreading systems are constructed, obtaining the revert type and hybrid type concentric Liesegang patterns, respectively. The competitive patterning behavior of the intermediate phase products AuGa2 and AuIn2 in hybrid Liesegang patterns is further analyzed by altering the initial Ga/In mass ratio, first-principles calculations, and molecular dynamic simulations. When the mass ratio of In in GaIn alloy exceeds 15%, it will preferentially react with Au. The discovery of LM Liesegang phenomenon is expected to be a flashpoint for self-organized reaction-diffusion systems and offers promising rules for diverse areas such as materials synthesis and the jewelry design industry.

4.
J Colloid Interface Sci ; 631(Pt B): 78-88, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36395629

RESUMO

HYPOTHESIS: The high surface tension of liquid metal (LM) causes interface incompatibility and poor bonding strength with many substrates. Fine adjustment towards the properties of the surface area is sufficient to introduce strong bonding. Hence, we hypothesize that the interlocking structure using hydrophilic polyvinyl alcohol (PVA) as a "bridge" should be helpful for tight interfacial bonding of LM with polymeric substrates, thus achieving high-performance LM/polymer membranes, which have wide applications in the field of soft sensors and robotics. EXPERIMENTS: The bulk EGaIn was fabricated into LM nanoparticles (LMNPs@PVA) solution. Then, PVA molecules were "doped" into the surface crosslink of the plasma treated polymer substrate by an interfacial penetrating method. Afterward, the solution was evenly dropped on the surface of the treated substrate to obtain the LMNP/polymer membrane after the water evaporated. Photothermal actuators were fabricated based on the membranes. FINDINGS: During the interlocking structure, PVA macromolecules could be doped and trapped onto the top surfaces of various polymer substrates as binding "bridges" between the LMNPs and the matrix materials. The achieved LMNP membrane exhibites satisfactory bonding strength, durability and water-assisted erase-reprint, which can be used as soft photothermal actuators with remote laser control.


Assuntos
Nanopartículas Metálicas , Polímeros , Metais , Álcool de Polivinil , Água
5.
Sci Rep ; 12(1): 15199, 2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36071207

RESUMO

The paper adopted SIMATIC PLC as the control center and cooperates with SIMATIC KTP900 basic touch screen and GRM533YW-C IOT module to design a CO2 transcritical refrigeration experiment platform (EXP). The EXP acquired analog signals from sensors through PLC expansion modules. The PLC communicated with the touch screen and the IoT module through PROFINET to achieve data interaction. In the EXP, the touch screen and the remote devices had separate control interfaces, both of which can perform system control and real-time data display. The control strategy and abnormal alarm of CO2 transcritical refrigeration system was accomplished in PLC. In the cooling experiment, the maximum deviation value of temperature was less than 0.4 °C in the refrigeration container. In the 750 W load step experiment, the static error of the temperature was ± 0.2 °C in the refrigeration container, and the static error of the superheat was ± 0.17 K. This indicated that the EXP had excellent control quality. The different control strategies for the compressor, gas cooler fan, auxiliary cooler fan, EEV and pressure regulating valve can be realized in the EXP. Therefore, the performance optimization of CO2 transcritical refrigeration system in different operating conditions can be studied.

6.
Soft Robot ; 9(6): 1098-1107, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35486839

RESUMO

Jellyfish have attracted worldwide attention owing to their fantastic moving styles, which also inspired development in soft robotics to meet the demands of underwater surveillance. In this study, a soft robotic jellyfish integrated liquid metal coil, and magnetic field is proposed for the first time to mimic the soft rowing propulsion of oblate jellyfish. The soft robotic jellyfish is actuated by the entirely soft electromagnetic actuators that enabled the gentle motion. Through conceptual experiments and computational fluid dynamics simulations, we systematically interpreted the mechanism of this robotic jellyfish and various factors to dominate its movement behaviors, which involve vortex formation and ascending modalities. Besides, underwater monitoring and bio-friendliness of robotic jellyfish were also demonstrated to illustrate its potential application scenarios and gentle motion characteristics. This study will help to broaden the vistas for liquid metal enabled bionic robotics in a wide range of underwater applications.


Assuntos
Robótica , Cifozoários , Animais , Biomimética , Natação , Hidrodinâmica , Metais
7.
ACS Appl Mater Interfaces ; 13(30): 36445-36454, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34309380

RESUMO

Hydrochromic visualization of a liquid interface shows vital potential applications in liquid displays, reversible writing, and acidic environmental detection, which offers a platform for detection and forewarning due to its intuitive and visual characteristics. Herein, we report a hydrochromic display due to the interfacial effect of liquid metal (LM)-triggered ammonium metatungstate (AMT) with instant dual-mode color switching. The double-electron-transfer reaction of the AMT on the surface of gallium-based LM caused the formation of heteropoly blue in the presence of acidic surroundings, resulting in a reversible color switching from being colorless to blue or blue to colorless. This visual interfacial discoloration phenomenon can be applied to the liquid display on diverse patterns of the LM surface. Furthermore, papers with a functional display were prepared, which can be used for writing up to eight times with dual-mode color switching. In addition, the reactive activity of acid triggering make it a potential candidate for use in visualizing an acidic environment with a detection range of pH = 1 to 0 (0.1-1.5 M). Briefly, this interfacial discoloration phenomenon enriches the interfacial engineering of LM and provides a unique prospective and wide-range platform for the application of LM.

8.
ACS Appl Mater Interfaces ; 13(14): 17093-17103, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33788538

RESUMO

As an emerging functional material, the liquid metal has demonstrated its encouraging potential in several areas with practical trials, while its global uniformity including high density and limited macroscopic interface might become a barrier for some tough application scenarios. Here, we proposed the concept of liquid metal foaming via decomposition agents, aiming to develop a generalized way to make porous foam metallic fluid, which would pave the way in achieving more structured features and adaptability of liquid metals. By introducing a greenness strategy with the help of an ecofriendly foaming agent, we realized a series of designed targeted liquid metal foams (LMFs). Compared with common liquid metals, LMFs possess many excellent properties, such as abundant interfaces, tunable conductivity, and adjustable stiffness, due to the controllable regulation of their porous structure. According to these unique characteristics, diversified values of LMFs were obtained. Benefiting from the naturally enriched interface in LMFs, the hydrogen evolution of LMFs in neutral deionized water was more efficient and more productive. Additionally, the compact LMF-air battery with high performance was originally manufactured. Moreover, the tunable LMF-enabled four-dimensional (4D) electromagnetic shielding materials possess excellent shielding performance. This material could open up broad vistas for the application of LMs.

9.
Adv Mater ; 31(23): e1901337, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30972851

RESUMO

Materials with a temperature-controlled reversible electrical transition between insulator and conductor are attracting huge attention due to their promising applications in many fields. However, most of them are intrinsically rigid and require complicated fabrication processes. Here, a highly stretchable (680% strain) liquid metal polymer composite as a reversible transitional insulator and conductor (TIC), which is accompanied with huge resistivity changes (more than 4 × 109 times) reversibly through a tuning temperature in a few seconds is introduced. When frozen, the insulated TIC becomes conductive and recovers after warming. Both the phase change of the liquid metal droplets and the rigidity change of the polymer contribute directly to transition between insulator and conductor. A simplified model is established to predict the expansion and connection of liquid metal droplets. Along with high stretchability, straightforward fabrication methods, rapid triggering time, large switching ratio, good repeatability, the TIC offers tremendous possibilities for numerous applications, like stretchable switches, semiconductors, temperature sensors, and resistive random-access memory. Accordingly, a system that can display numbers and letters via converting alternative TIC temperature to a binary signal on a computer is conceived and demonstrated. The present discovery suggests a general strategy for fabricating and stimulating a stretchable transitional insulator and conductor based on liquid metal and allied polymers.

10.
RSC Adv ; 9(60): 35102-35108, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-35530692

RESUMO

A one-step strategy for fabricating flexible conductors via phase separation is proposed, wherein, the liquid metal was implanted into polydimethylsiloxane, whose viscosity was changed using hexane. Such self-encapsulating composite exhibited good electronic and mechanical stability under mechanical cycles with no significant leaking of droplets during the testing process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA