Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(50): 59066-59074, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38051946

RESUMO

Electrode diffusion barrier plays an important role in thermoelectric cooling devices. Compared with p-type Bi0.5Sb1.5Te3, the compatibility between commercial Ni barrier and n-type Bi2Te2.7Se0.3 is a key bottleneck to enhance the performance of Bi2Te3-based cooling devices. This paper proposed a NiP alloy barrier to improve the compatibility with n-type Bi2Te2.7Se0.3, and systemically investigated the contact and interfacial dynamics properties. Due to the low diffusion rate of NiP alloy, the initial interfacial contact resistivity of Bi2Te2.7Se0.3/NiP is as low as 0.90 µΩ cm2, and it further can be depressed below 1.98 µΩ cm2 even after aging at 423 K for 35 days, indicating the superior thermal stability of the NiP barrier layer compared to the commercial Ni barrier layer. Based on the NiP barrier, a 15-pair bismuth telluride device is prepared and a high cooling temperature difference of 71.5 K at a hot-side temperature of 304 K is achieved, which proves the practical applications potential of NiP barrier for Bi2Te3-based modules.

2.
Materials (Basel) ; 16(13)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37444927

RESUMO

Copper is the most common interconnecting material in the field of microelectronic packaging, which is widely used in advanced electronic packaging technologies. However, with the trend of the miniaturization of electronic devices, the dimensions of interconnectors have decreased from hundreds of microns to tens of or even several microns, which has brought serious reliability issues. As a result, nanotwinned copper (nt-Cu) has been proposed as a potential candidate material and is being certified progressively. Firstly, the physical properties of nt-Cu have been widely studied. Notably, the higher thermal stability and oxidation resistance of the (111) texture causes nt-Cu to maintain excellent physical properties under high-temperature serving conditions. Secondly, recent works on the electrolyte and electroplating processes of nt-Cu on wafer substrates are summarized, focusing on how to reduce the thickness of the transition layer, improve the twin density, and achieve complicated pattern filling. Thirdly, nt-Cu can effectively eliminate Kirkendall voids when it serves as UBM or a CuP. Additionally, the high (111) texture can control the preferred orientation of interfacial intermetallic compounds (IMCs) at the Cu-Sn interface, which should be helpful to improve the reliability of solder joints. nt-Cu has superior electromigration resistance and antithermal cycling ability compared to ordinary copper RDLs and TSVs. Above all, nt-Cu has attracted much attention in the field of microelectronic packaging in recent years. The preparation-performance-reliability interrelationship of nt-Cu is summarized and displayed in this paper, which provides a solid theoretical basis for its practical applications.

3.
Nanotechnology ; 34(1)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36191523

RESUMO

Nanotwinned copper is a potential microelectronic interconnection material due to its superior strength and conductivity, however, its filling ability is urgently needed to improve before its application in the field of advanced packaging. The effect of additive (sodium thiazolinyl dithiopropane sulphonate, SH110) addition on the surface roughness, microstructure, mechanical properties and filling capacity of nanotwinned copper films was investigated. The surface roughness and grain size were firstly reduced then increased with the increasing concentrations of SH110, reaching the minimum value at 10 ppm. It was noticed that copper films with 10 ppm SH110 also possessed superior tensile strength and elongation, which were measured as 481 MPa and 3.68% on average of 12µm thick samples by dynamic thermo-mechanical analyzer. Further, their uniformity and flatness of redistributed layers (RDLs) were controlled as 2% and 1.9%, which were significantly improved compared to the samples without SH110 (7.6% and 4.7%). As demonstrated by linear sweep voltammetry analysis and galvanostatic measurement, the SH110 could cooperate well with gelatin and serve as a combination of accelerator and leveler, resulting in the improvement of filling capacity for nanotwinned copper RDLs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...