Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 12: 1367929, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38832128

RESUMO

Introduction: Surface electromyogram (sEMG) signals have been widely used in human upper limb force estimation and motion intention recognition. However, the electrocardiogram(ECG) artifact generated by the beating of the heart is a major factor that reduces the quality of the EMG signal when recording the sEMG signal from the muscle close to the heart. sEMG signals contaminated by ECG artifacts are difficult to be understood correctly. The objective of this paper is to effectively remove ECG artifacts from sEMG signals by a novel method. Methods: In this paper, sEMG and ECG signals of the biceps brachii, brachialis, and triceps muscle of the human upper limb will be collected respectively. Firstly, an improved multi-layer wavelet transform algorithm is used to preprocess the raw sEMG signal to remove the background noise and power frequency interference in the raw signal. Then, based on the theory of blind source separation analysis, an improved Fast-ICA algorithm was constructed to separate the denoising signals. Finally, an ECG discrimination algorithm was used to find and eliminate ECG signals in sEMG signals. This method consists of the following steps: 1) Acquisition of raw sEMG and ECG signals; 2) Decoupling the raw sEMG signal; 3) Fast-ICA-based signal component separation; 4) ECG artifact recognition and elimination. Results and discussion: The experimental results show that our method has a good effect on removing ECG artifacts from contaminated EMG signals. It can further improve the quality of EMG signals, which is of great significance for improving the accuracy of force estimation and motion intention recognition tasks. Compared with other state-of-the-art methods, our method can also provide the guiding significance for other biological signals.

2.
Bioengineering (Basel) ; 11(5)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38790337

RESUMO

Mechanomyography (MMG) is an important muscle physiological activity signal that can reflect the amount of motor units recruited as well as the contraction frequency. As a result, MMG can be utilized to estimate the force produced by skeletal muscle. However, cross-talk and time-series correlation severely affect MMG signal recognition in the real world. These restrict the accuracy of dynamic muscle force estimation and their interaction ability in wearable devices. To address these issues, a hypothesis that the accuracy of knee dynamic extension force estimation can be improved by using MMG signals from a single muscle with less cross-talk is first proposed. The hypothesis is then confirmed using the estimation results from different muscle signal feature combinations. Finally, a novel model (improved grey wolf optimizer optimized long short-term memory networks, i.e., IGWO-LSTM) is proposed for further improving the performance of knee dynamic extension force estimation. The experimental results demonstrate that MMG signals from a single muscle with less cross-talk have a superior ability to estimate dynamic knee extension force. In addition, the proposed IGWO-LSTM provides the best performance metrics in comparison to other state-of-the-art models. Our research is expected to not only improve the understanding of the mechanisms of quadriceps contraction but also enhance the flexibility and interaction capabilities of future rehabilitation and assistive devices.

3.
Sensors (Basel) ; 22(17)2022 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-36081154

RESUMO

Six-axis force/torque sensors are widely installed in manipulators to help researchers achieve closed-loop control. When manipulators work in comic space and deep sea, the adverse ambient environment will cause various degrees of damage to F/T sensors. If the disability of one or two dimensions is restored by self-restoration methods, the robustness and practicality of F/T sensors can be considerably enhanced. The coupling effect is an important characteristic of multi-axis F/T sensors, which implies that all dimensions of F/T sensors will influence each other. We can use this phenomenon to speculate the broken dimension by other regular dimensions. Back propagation neural network (BPNN) is a classical feedforward neural network, which consists of several layers and adopts the back-propagation algorithm to train networks. Hyperparameters of BPNN cannot be updated by training, but they impact the network performance directly. Hence, the particle swarm optimization (PSO) algorithm is adopted to tune the hyperparameters of BPNN. In this work, each dimension of a six-axis F/T sensor is regarded as an element in the input vector, and the relationships among six dimensions can be obtained using optimized BPNN. The average MSE of restoring one dimension and two dimensions over the testing data is 1.1693×10-5 and 3.4205×10-5, respectively. Furthermore, the average quote error of one restored dimension and two restored dimensions are 8.800×10-3 and 8.200×10-3, respectively. The analysis of experimental results illustrates that the proposed fault restoration method based on PSO-BPNN is viable and practical. The F/T sensor restored using the proposed method can reach the original measurement precision.

4.
Front Bioeng Biotechnol ; 10: 970859, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36159693

RESUMO

Rapid and accurate prediction of interaction force is an effective way to enhance the compliant control performance. However, whether individual muscles or a combination of muscles is more suitable for interaction force prediction under different contraction tasks is of great importance in the compliant control of the wearable assisted robot. In this article, a novel algorithm that is based on sEMG and KPCA-DRSN is proposed to explore the relationship between interaction force prediction and sEMG signals. Furthermore, the contribution of each muscle to the interaction force is assessed based on the predicted results. First of all, the experimental platform for obtaining the sEMG is described. Then, the raw sEMG signal of different muscles is collected from the upper arm during different contractions. Meanwhile, the output force is collected by the force sensor. The Kernel Principal Component Analysis (KPCA) method is adopted to remove the invalid components of the raw sEMG signal. After that, the processed sequence is fed into the Deep Residual Shrinkage Network (DRSN) to predict the interaction force. Finally, based on the prediction results, the contribution of each sEMG signal from different muscles to the interaction force is evaluated by the mean impact value (MIV) indicator. The experimental results demonstrate that our methods can automatically extract the valid features of sEMG signal and provided fast and efficient prediction. In addition, the single muscle with the largest MIV index could predict the interaction force faster and more accurately than the muscle combination in different contraction tasks. The finding of our research provides a solid evidence base for the compliant control of the wearable robot.

5.
IEEE J Biomed Health Inform ; 26(11): 5461-5472, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35969552

RESUMO

Intention recognition based on surface electromyography (sEMG) signals is pivotal in human-machine interaction (HMI), where continuous motion estimation with high accuracy has been the challenge. The convolutional neural network (CNN) possesses excellent feature extraction capability. Still, it is difficult for ordinary CNN to explore the dependencies of time-series data, so most researchers adopt the recurrent neural network or its variants (e.g., LSTM) for motion estimation tasks. This paper proposes a multi-feature temporal convolutional attention-based network (MFTCAN) to recognize joint angles continuously. First, we recruited ten subjects to accomplish the signal acquisition experiments in different motion patterns. Then, we developed a joint training mechanism that integrates MFTCAN with commonly used statistical algorithms, and the integrated architectures were named MFTCAN-KNR, MFTCAN-SVR and MFTCAN-LR. Last, we utilized two performance indicators (RMSE and [Formula: see text]) to evaluate the effect of different methods. Moreover, we further validated the performance of the proposed method on the open dataset (Ninapro DB2). When evaluating on the original dataset, the average RMSE of the estimations obtained by MFTCAN-KNR is 0.14, which is significantly less than the results obtained by LSTM (0.20) and BP (0.21). The average [Formula: see text] of the estimations obtained by MFTCAN-KNR is 0.87, indicating the anti-disturbance ability of the architecture. Moreover, MFTCAN-KNR also achieves high performance when evaluating on the open dataset. The proposed methods can effectively accomplish the task of motion estimation, allowing further implementations in the human-exoskeleton interaction systems.


Assuntos
Exoesqueleto Energizado , Redes Neurais de Computação , Humanos , Eletromiografia/métodos , Algoritmos
6.
Sensors (Basel) ; 22(13)2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35808305

RESUMO

The performance of a six-axis force/torque sensor (F/T sensor) severely decreased when working in an extreme environment due to its sensitivity to ambient temperature. This paper puts forward an ensemble temperature compensation method based on the whale optimization algorithm (WOA) tuning the least-square support vector machine (LSSVM) and trimmed bagging. To be specific, the stimulated annealing algorithm (SA) was hybridized to the WOA to solve the local entrapment problem, and an adaptive trimming strategy is proposed to obtain the optimal trim portion for the trimmed bagging. In addition, inverse quote error (invQE) and cross-validation are employed to estimate the fitness better in training process. The maximum absolute measurement error caused by temperature decreased from 3.34% to 3.9×10-3% of full scale after being compensated by the proposed method. The analyses of experiments illustrate the ensemble hWOA-LSSVM based on improved trimmed bagging improves the precision and stability of F/T sensors and possesses the strengths of local search ability and better adaptability.


Assuntos
Algoritmos , Máquina de Vetores de Suporte , Análise dos Mínimos Quadrados , Temperatura , Torque
7.
Sensors (Basel) ; 22(12)2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35746432

RESUMO

During lower-extremity rehabilitation training, muscle activity status needs to be monitored in real time to adjust the assisted force appropriately, but it is a challenging task to obtain muscle force noninvasively. Mechanomyography (MMG) signals offer unparalleled advantages over sEMG, reflecting the intention of human movement while being noninvasive. Therefore, in this paper, based on MMG, a combined scheme of gray relational analysis (GRA) and support vector regression optimized by an improved cuckoo search algorithm (ICS-SVR) is proposed to estimate the knee joint extension force. Firstly, the features reflecting muscle activity comprehensively, such as time-domain features, frequency-domain features, time-frequency-domain features, and nonlinear dynamics features, were extracted from MMG signals, and the relational degree was calculated using the GRA method to obtain the correlation features with high relatedness to the knee joint extension force sequence. Then, a combination of correlated features with high relational degree was input into the designed ICS-SVR model for muscle force estimation. The experimental results show that the evaluation indices of the knee joint extension force estimation obtained by the combined scheme of GRA and ICS-SVR were superior to other regression models and could estimate the muscle force with higher estimation accuracy. It is further demonstrated that the proposed scheme can meet the need of muscle force estimation required for rehabilitation devices, powered prostheses, etc.


Assuntos
Joelho , Músculo Esquelético , Algoritmos , Eletromiografia/métodos , Humanos , Joelho/fisiologia , Articulação do Joelho/fisiologia , Movimento , Músculo Esquelético/fisiologia
8.
J Electromyogr Kinesiol ; 42: 136-142, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30077088

RESUMO

The commonly used classifiers for pattern recognition of human motion, like backpropagation neural network (BPNN) and support vector machine (SVM), usually implement the classification by extracting some hand-crafted features from the human biological signals. These features generally require the domain knowledge for researchers to be designed and take a long time to be tested and selected for high classification performance. In contrast, convolutional neural network (CNN), which has been widely applied to computer vision, can learn to automatically extract features from the training data by means of convolution and subsampling, but CNN training usually requires large sample data and has the overfitting problem. On the other hand, SVM has good generalization ability and can solve the small sample problem. Therefore, we proposed a CNN-SVM combined model to make use of their advantages. In this paper, we detected 4-channel mechanomyography (MMG) signals from the thigh muscles and fed them in the form of time series signals to the CNN-SVM combined model for the pattern recognition of knee motion. Compared with the common classifier performing the classification with hand-crafted features, the CNN-SVM combined model could automatically extract features using CNN, and better improved the generalization ability of CNN and the classification accuracy by means of combining the SVM. This study would provide reference for human motion recognition using other time series signals and further expand the application fields of CNN.


Assuntos
Joelho/fisiologia , Movimento (Física) , Redes Neurais de Computação , Reconhecimento Automatizado de Padrão/métodos , Máquina de Vetores de Suporte , Humanos , Articulação do Joelho/fisiologia , Músculo Esquelético/fisiologia
9.
J Electromyogr Kinesiol ; 38: 94-102, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29182965

RESUMO

Mechanomyography (MMG) signal has been recently investigated for pattern recognition of human motion. In theory, it is no need of direct skin contact to be detected and unaffected by changes in skin impedance. So, it is hopeful for developing wearable sensing device with clothes. However, there have been no studies so far to detect MMG signal on clothes and verify the feasibility of pattern recognition. For this study, 4-channel MMG signals were detected on clothes from the thigh muscles of 8 able-bodied participants. The support vector machines (SVM) classifier with 4 common features was used to recognize 6 knee motions and the average accuracy of nearly 88% was achieved. The accuracy can be further improved up to 91% by introducing a new proposed feature of the difference of mean absolute value (DMAV), but not by root mean square (RMS) or mean absolute value (MAV). Furthermore, the first-order Markov chain model was combined with the SVM classifier and it can avoid the misclassifications in some cases. For application to wearable power-assisted devices, this study would promote the developments of more flexible, more comfortable, and minimally obtrusive wearable sensing devices with clothes and recognition techniques of human motion intention.


Assuntos
Eletromiografia/métodos , Joelho/fisiologia , Movimento , Músculo Esquelético/fisiologia , Vestuário , Eletromiografia/instrumentação , Eletromiografia/normas , Humanos , Movimento (Física) , Máquina de Vetores de Suporte
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA