Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Biol Eng Comput ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38622437

RESUMO

Mandibular defect repair has always been a clinical challenge, facing technical bottleneck. The new materials directly affect technological breakthroughs in mandibular defect repair field. Our aim is to fabricate a scaffold of advanced biomaterials for repairing of small mandibular defect. Therefore, a novel dual-channel scaffold consisting of silk fibroin/collagen type-I/hydroxyapatite (SCH) and polycaprolactone/hydroxyapatite (PCL/HA) was fabricated by cryogenic 3D printing technology with double nozzles. The mechanical properties and behaviors of the dual-channel scaffold were investigated by performing uniaxial compression, creep, stress relaxation, and ratcheting experiments respectively. The experiments indicated that the dual-channel scaffold was typical non-linear viscoelastic consistent with cancellous tissue; the Young's modulus of this scaffold was 60.1 kPa. Finite element analysis (FEA) was employed performing a numerical simulation to evaluate the implantation effect in mandible. The stress distribution of the contact area between scaffold and defect was uniform, the maximum Mises stress of cortical bone and cancellous bone in defect area were 54.520 MPa and 3.196 MPa, and the maximum displacement of cortical bone and cancellous bone in defect area were 0.1575 mm and 0.1555 mm respectively, which distributed in the incisor region. The peak maximum Mises stress experienced by the implanted scaffold was 3.128 × 10-3 MPa, and the maximum displacement was 6.453 × 10-2 mm distributed near incisor area. The displacement distribution of the scaffold was consistent with that of cortical and cancellous bone. The scaffold recovered well when the force applied on it disappeared. Above all, the dual-channel scaffold had excellent bio-mechanical properties in implanting mandible, which provides a new idea for the reconstruction of irregular bone defects in the mandible and has good clinical development prospects.

2.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 41(2): 328-334, 2024 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-38686414

RESUMO

Superficial cartilage defect is an important factor that causes osteoarthritis. Therefore, it is very important to investigate the influence of superficial cartilage defects on its surface morphology and mechanical properties. In this study, the knee joint cartilage samples of adult pig were prepared, which were treated by enzymolysis with chymotrypsin and physical removal with electric friction pen, respectively. Normal cartilage and surface treated cartilage were divided into five groups: control group (normal cartilage group), chymotrypsin immersion group, chymotrypsin wiping group, removal 10% group with electric friction pen, and removal 20% group with electric friction pen. The surface morphology and structure of five groups of samples were characterized by laser spectrum confocal microscopy and environmental field scanning electron microscopy, and the mechanical properties of each group of samples were evaluated by tensile tests. The results show that the surface arithmetic mean height and fracture strength of the control group were the smallest, and the fracture strain was the largest. The surface arithmetic mean height and fracture strength of the removal 20% group with electric friction pen were the largest, and the fracture strain was the smallest. The surface arithmetic mean height, fracture strength and fracture strain values of the other three groups were all between the above two groups, but the surface arithmetic mean height and fracture strength of the removal 10% group with electric friction pen, the chymotrypsin wiping group and the chymotrypsin soaking group decreased successively, and the fracture strain increased successively. In addition, we carried out a study on the elastic modulus of different groups, and the results showed that the elastic modulus of the control group was the smallest, and the elastic modulus of the removal 20% group with electric friction pen was the largest. The above study revealed that the defect of the superficial area of cartilage changed its surface morphology and structure, and reduced its mechanical properties. The research results are of great significance for the prevention and repair of cartilage injury.


Assuntos
Cartilagem Articular , Animais , Suínos , Cartilagem Articular/fisiologia , Propriedades de Superfície , Fenômenos Biomecânicos , Articulação do Joelho/fisiologia , Estresse Mecânico , Resistência à Tração , Quimotripsina/metabolismo , Microscopia Eletrônica de Varredura
3.
J Bone Miner Metab ; 42(1): 17-26, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38062272

RESUMO

INTRODUCTION: The bone tissue is susceptible to hypergravity (+ G) environment. It is necessary to discuss the extent to which specific + G values are beneficial or detrimental to bone tissue. The objective of this study was to characterize the effects of high + G values on mechanical properties, microstructures, and cellular metabolism of bone. MATERIALS AND METHODS: 30 male Wistar rats aged 12 weeks were randomly divided into 5 groups, and bore different + G (namely + 1G, + 4G, + 8G, + 10G and + 12G) environments respectively for 4 weeks, 5 days each week, and 3 minutes each day. The macro-mechanical parameters, microstructure parameters, and mRNA transcription levels of the tibia were determined through the three-point bending method, micro-CT detection, and q-PCR analysis, respectively. RESULTS: As the + G value increases, hypergravity becomes increasingly detrimental to the macro-mechanical performance of rat tibia. Concerning the microstructure of cancellous bone, there appears to be a favorable trend at + 4G, followed by a progressively detrimental trend at higher G values. In addition, the mRNA transcription levels of OPG and RANKL show an initial tendency of enhanced bone absorption at +4G, followed by an increase in bone remodeling capacity as G value increases. CONCLUSION: The higher G values correspond to poorer macro-mechanical properties of the tibia, and a + 4G environment benefits the microstructure of the tibia. At the cellular level, bone resorption is enhanced in the + 4G group, but the bone remodeling capability gradually increases with further increments in G values.


Assuntos
Hipergravidade , Tíbia , Ratos , Masculino , Animais , Ratos Wistar , Remodelação Óssea , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Densidade Óssea
4.
Transfus Apher Sci ; 62(6): 103840, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37925341

RESUMO

Osteomyelitis is a refractory disease caused by microbial invasion of the bone, leading to destruction of the bone tissue. It is more common in children. Osteomyelitis requires long treatment at high cost and is associated with high rates of recurrence and disability. It can also be complicated by sepsis that, if not treated in time, can result in death. Here, we report the first case of a 10-year-old patient who presented with chronic tibial osteomyelitis complicated with fracture. The patient had received traditional treatment for osteomyelitis for over 14 months without success. However, after 4 months of treatment with autologous platelet-rich plasma, the fracture, infection, and osteomyelitis resolved completely. These clinical observations demonstrate the potential for using autologous platelet-rich plasma as a novel treatment for chronic pediatric osteomyelitis.


Assuntos
Osteomielite , Plasma Rico em Plaquetas , Humanos , Criança , Osteomielite/terapia , Osteomielite/complicações , Resultado do Tratamento
5.
Exp Biol Med (Maywood) ; 248(20): 1708-1717, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37837381

RESUMO

Mechanical signals influence the morphology, function, differentiation, proliferation, and growth of cells. Due to the small size of cells, it is essential to analyze their mechanobiological responses with an in vitro mechanical loading device. Cells are cultured on an elastic silicone membrane substrate, and mechanical signals are transmitted to the cells by the substrate applying mechanical loads. However, large areas of non-uniform strain fields are generated on the elastic membrane, affecting the experiment's accuracy. In the study, finite-element analysis served as the basis of optimization, with uniform strain as the objective. The thickness of the basement membrane and loading constraints were parametrically adjusted. Through finite-element cycle iteration, the "M" profile basement membrane structure of the culture chamber was obtained to enhance the uniform strain field of the membrane. The optimized strain field of culture chamber was confirmed by three-dimensional digital image correlation (3D-DIC) technology. The results showed that the optimized chamber improved the strain uniformity factor. The uniform strain area proportion of the new chamber reached 90%, compared to approximately 70% of the current chambers. The new chamber further improved the uniformity and accuracy of the strain, demonstrating promising application prospects.


Assuntos
Imageamento Tridimensional , Estresse Mecânico , Análise de Elementos Finitos , Diferenciação Celular
6.
Biomater Adv ; 149: 213389, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36965402

RESUMO

Silk fibroin-collagen type II scaffolds are promising in cartilage tissue engineering due to their suitable biological functionality to promote proliferation of chondrocytes in vitro. However, their degradation properties, which are of crucial importance as scaffold degradation should consistent with the new tissue formation process, are still unknown. In this study, degradability of silk fibroin-collagen type II cartilage scaffolds was probed both in vitro and in vivo. In vitro degradation experiments show that the scaffolds decreased 32.25 % ± 0.62 %, 34.27 % ± 0.96 %, 36.27 % ± 2.39 % in weight after 8 weeks of degradation at the irrigation velocity of 0 mL/min, 7.89 mL/min and 15.79 mL/min. The degradation ratio, which increases with time and increasing irrigation velocity, is described by combining the built mathematic model and finite element modeling method. The scaffolds after 8 weeks of degradation in vitro keep their mechanical structural integrity to support new tissues. In vivo degradation experiments conducted in rabbits further show that the scaffolds degrade gradually, be absorbed with time and finally collapse in structure. The degradation process is accompanied by the growth of fibrous tissues and the scaffold is filled by fibrous tissues after 12 weeks of implantation. Immunohistology analysis shows that the inflammation caused by scaffolds is controllable and gradually alleviates with time. To sum up, silk fibroin-collagen type II cartilage scaffolds, which show suitable mechanical properties and biocompatibility during degradation in vitro and in vivo, have great potential in cartilage repair. The novelty of the study is that it not only introduces a mathematical model to predict the irrigation degradation ratio, but also provides experimental degradation data support for clinical application of silk fibroin-collagen type II cartilage scaffolds.


Assuntos
Fibroínas , Animais , Coelhos , Fibroínas/farmacologia , Colágeno Tipo II , Alicerces Teciduais/química , Cartilagem , Condrócitos
7.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 39(6): 1149-1157, 2022 Dec 25.
Artigo em Chinês | MEDLINE | ID: mdl-36575084

RESUMO

The small molecule nutrients and cell growth factors required for the normal metabolism of chondrocyte mainly transport into the cartilage through free diffusion. However, the specific mass transfer law in the cartilage remains to be studied. In this study, using small molecule rhodamine B as tracer, the mass transfer models of cartilage were built under different pathways including surface pathway, lateral pathway and composite pathway. Sections of cartilage at different mass transfer times were observed by using laser confocal microscopy and the transport law of small molecules within different layers of cartilage was studied. The results showed that rhodamine B diffused into the whole cartilage layer through surface pathway within 2 h. The fluorescence intensity in the whole cartilage layer increased with the increase of mass transfer time. Compared to mass transfer of 2 h, the mean fluorescence intensity in the superficial, middle, and deep layers of cartilage increased by 1.83, 1.95, and 3.64 times, respectively, after 24 h of mass transfer. Under lateral path condition, rhodamine B was transported along the cartilage width, and the molecular transport distance increased with increasing mass transfer time. It is noted that rhodamine B could be transported to 2 mm away from cartilage side after 24 h of mass transfer. The effect of mass transfer under the composite path was better than those under the surface path and the lateral path, and especially the mass transfer in the deep layer of cartilage was improved. This study may provide a reference for the treatment and repair of cartilage injury.


Assuntos
Cartilagem Articular , Rodaminas/metabolismo , Rodaminas/farmacologia , Condrócitos
8.
J Bone Miner Metab ; 40(6): 940-950, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36350408

RESUMO

INTRODUCTION: The bone lacunar-canalicular system (LCS) is an important microstructural basis for signaling and material transport in bone tissue, guaranteeing normal physiological processes in tissues. Spaceflight astronauts and elderly osteoporosis are related to its function, so it is necessary to reveal the mass transfer laws in bone microstructure under different gravity fields to provide insight for effective clinical treatment. MATERIALS AND METHODS: Using the natural LCS structure of bovine tibial cortical bone as the object, the mass transfer experiments on cortical bone were conducted by using sodium fluorescein tracer through different frequency pulsating pressure provided by dynamic perfusion loading device and different high G environments provided by high-speed centrifuge to analyze the mass transfer laws under different gravity fields and different pulsating pressures. RESULTS: The fluorescence intensity of lacunae within the osteon was lower the farther away from the Haversian canal. As the gravity field magnitude increased, the fluorescence intensity within each lacuna enhanced, and the more distant the lacunae from the Haversian canal, the greater the fluorescence intensity enhancement. High-frequency pulsating pressure simulated high-intensity exercise in humans can improve mass transfer efficiency in the LCS. CONCLUSION: High-intensity exercise may greatly increase solute molecules, nutrients, and signaling molecules in osteocytes and improve the activity of osteocytes. Hypergravity can enhance the transport of solute molecules, nutrients, and signaling molecules in the LCS, especially promoting mass transfer to deep layer lacunae. Conversely, mass transfer to deep layer lacunae may be inhibited under microgravity, causing bone loss and ultimately leading to osteoporosis.


Assuntos
Ósteon , Osteoporose , Humanos , Animais , Bovinos , Idoso , Osteócitos , Tíbia , Osso Cortical
9.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 39(5): 997-1004, 2022 Oct 25.
Artigo em Chinês | MEDLINE | ID: mdl-36310489

RESUMO

Based on the current study of the influence of mechanical factors on cell behavior which relies heavily on experiments in vivo, a culture chamber with a large uniform strain area containing a linear motor-powered, up-to-20-Hz cell stretch loading device was developed to exert mechanical effects on cells. In this paper, using the strain uniformity as the target and the substrate thickness as the variable, the substrate bottom of the conventional incubation chamber is optimized by using finite element technique, and finally a new three-dimensional model of the incubation chamber with "M" type structure in the section is constructed, and the distribution of strain and displacement fields are detected by 3D-DIC to verify the numerical simulation results. The experimental results showed that the new cell culture chamber increased the accuracy and homogeneous area of strain loading by 49.13% to 52.45% compared with that before optimization. In addition, the morphological changes of tongue squamous carcinoma cells under the same strain and different loading times were initially studied using this novel culture chamber. In conclusion, the novel cell culture chamber constructed in this paper combines the advantages of previous techniques to deliver uniform and accurate strains for a wide range of cell mechanobiology studies.


Assuntos
Técnicas de Cultura de Células , Estresse Mecânico , Simulação por Computador , Análise de Elementos Finitos
10.
J Biomech ; 134: 110988, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35151037

RESUMO

Cracks may change the mechanical properties of articular cartilage, and further lead to early osteoarthritis. The study aimed to probe the mechanical properties of cracked cartilage under uniaxial tensile loading. The fracture process of cracked cartilage can be divided into two stages, namely crack-tip blunting stage and crack growth stage. The creep strain of cracked cartilage increases rapidly and then slowly with time, and it is well predicted by the nonlinear viscoelastic creep model. Compared with intact cartilage, cracked cartilage shows larger creep strain. During cyclic loading, the mean strain, degree of necking and crack-tip blunting of cracked cartilage increase with the increase of peak stress, while they decrease with the increase of loading frequency. The crack-tip morphology shows that cyclic loading has induced irreversible deformation in cartilage with a large number of collagen fibrils yielding, and further damaged the collagen fibril network of cartilage. However, no obvious crack growth is observed under the testing conditions.


Assuntos
Cartilagem Articular , Osteoartrite , Matriz Extracelular , Humanos , Dinâmica não Linear , Estresse Mecânico , Resistência à Tração
11.
Front Bioeng Biotechnol ; 10: 1085062, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36704296

RESUMO

Creep deformation in cartilage can be observed under physiological loads in daily activities such as standing, single-leg lunge, the stance phase of gait. If not fully recovered in time, it may induce irreversible damage in cartilage and further lead to early osteoarthritis. In this study, 36 cruciform-shape samples in total from 18 bulls were employed to conduct the uniaxial and biaxial creep-recovery tests by using a biaxial cyclic testing system. Effects of stress level (σ = .5, 1.0, 1.5 MPa) and biaxial stress ratio (B = 0, .3, .5, 1.0) on creep-recovery behaviors of cartilage were characterized. And then, a viscoelastic constitutive model was employed to predict its creep-recovery behaviors. The results showed that the creep strain and its three components, namely instantaneous elastic strain, delayed elastic strain and viscous flow strain, increase with the increasing stress level or with the decreasing biaxial stress ratio. Compared with uniaxial creep-recovery, biaxial creep-recovery exhibits a smaller creep strain, a faster recovery rate of creep strain and a smaller residual strain. Besides, the built viscoelastic model can be used to describe the uniaxial creep-recovery behaviors of cartilage as a good correlation between the fitted results and test results is achieved. The findings are expected to provide new insights into understanding normal joint function and cartilage pathology.

12.
BMC Musculoskelet Disord ; 22(1): 1, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33397351

RESUMO

BACKGROUND: To compare the efficacy of three different fixation methods of fibula combined with external fixation of tibia for the treatment of extra-articular open fractures of distal tibia and fibula. METHODS: From January 2017 to July 2019, 91 cases of open fractures of distal tibia and fibula were treated with external fixator, and the fibula was fixed with non-fixation (group A, n = 35), plate-screw (group B, n = 30) and Kirschner wire (group C, n = 26). The operation time, intraoperative blood loss, surgical and implants costs, fracture healing time, postoperative complications, and American Orthopaedic Foot and Ankle surgery (AOFAS) scores were compared among the groups. RESULTS: Four patients were lost to follow-up, and 87 patients were followed up for 5-35 months (average, 14.2 months). The operation time of group C (114.92 ± 36.09 min) was shorter than that of group A (142.27 ± 47.05 min) and group B (184.00 ± 48.56 min) (P < 0.05). There was no difference in intraoperative blood loss among the three groups (P > 0.05). The surgical and implants costs in group C (5.24 ± 1.21, thousand dollars) is lower than that in group A (6.48 ± 1.11, thousand dollars) and group B (9.37 ± 2.16, thousand dollars) (P < 0.05). The fracture healing time of group C (5.67 ± 1.42 months) was significantly less than that of group A (6.90 ± 1.33 months) and group B (6.70 ± 1.12 months) (P < 0.05). The postoperative complications such as fractures delayed union and nonunion in group C (2 cases, 8.00%) is less than that in group A (13 cases, 39.39%) and group B (11cases, 37.93%) (P < 0.05). The wound infection and needle-tract infection did not differ among the three groups (P > 0.05). The excellent or good rate of ankle function was 69.70% in group A, 72.41% in group B and 84.00% in group C, with no statistical difference among the three groups (P > 0.05). CONCLUSION: Compared with simple external fixator fixation and external fixator combined with plate-screw osteosynthesis, external fixator combined with K-wire intramedullary fixation shortens the operative time and fracture healing time, reduced costs and complications of fracture healing, while the blood loss, infection complications and ankle function recovery showed no difference with the other two groups. External fixator combined with plate-screw osteosynthesis had no advantage in treating extra-articular open fractures of distal tibia and fibula when compared with simple external fixation.


Assuntos
Fraturas Expostas , Fraturas da Tíbia , Fixadores Externos , Fíbula/diagnóstico por imagem , Fíbula/cirurgia , Fixação Interna de Fraturas , Consolidação da Fratura , Fraturas Expostas/diagnóstico por imagem , Fraturas Expostas/cirurgia , Humanos , Estudos Retrospectivos , Tíbia , Fraturas da Tíbia/diagnóstico por imagem , Fraturas da Tíbia/cirurgia , Resultado do Tratamento
13.
Mol Med Rep ; 22(5): 4031-4040, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33000215

RESUMO

Histone deacetylase 4 (HDAC4) plays a vital role in chondrocyte hypertrophy and bone formation. To investigate the function of HDAC4 in postnatal skeletal development, the present study developed lineage­specific HDAC4­knockout mice [collagen type 2α1 (Col2α1)­Cre, HDAC4d/d mice] by crossing transgenic mice expressing Cre recombinase. Thus, a specific ablation of HDAC4 was performed in Col2α1­expressing mice cells. The knee joints of HDAC4fl/fl and Col2α1­Cre, HDAC4d/d mice were analyzed at postnatal day (P)2­P21 using an in vivo bromodeoxyuridine (BrdU) assay, and Safranin O, Von Kossa and whole­body staining were used to evaluate the developmental growth plate, hypertrophic differentiation, mineralization and skeletal mineralization patterns. The trabecular bone was analyzed using microcomputed tomography. The expressions of BrdU, proliferating cell nuclear antigen (PCNA), matrix metalloproteinase (MMP)­13, runt­related transcription factor (Runx)­2, osteoprotegerin (OPG), CD34, type X collagen (ColX), osteocalcin and Wnt5a were determined using immunohistochemistry, in situ hybridization (ISH) and reverse transcription­quantitative (RT­q)PCR. The results demonstrated that HDAC4­null mice (HDAC4d/d mice) were severely runted; these mice had a shortened hypertrophic zone (histopathological evaluation), accelerated vascular invasion and articular mineralization (Von Kossa staining), elevated expressions of MMP­13, Runx2, OPG and CD34 (RT­qPCR and immunohistochemistry), downregulated expression of the proliferative marker BrdU and PCNA (immunohistochemistry), increased expression of ColX and decreased expression of Wnt5a (ISH). In conclusion, chondrocyte­derived HDAC4 was responsible for regulating chondrocyte proliferation and differentiation as well as endochondral bone formation.


Assuntos
Crescimento Celular , Condrócitos/metabolismo , Colágeno Tipo II/metabolismo , Deleção de Genes , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Osteogênese/genética , Animais , Osso Esponjoso/patologia , Diferenciação Celular/genética , Proliferação de Células/genética , Células Cultivadas , Condrogênese/genética , Colágeno Tipo X/genética , Colágeno Tipo X/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Feminino , Masculino , Metaloproteinase 13 da Matriz/genética , Metaloproteinase 13 da Matriz/metabolismo , Camundongos , Camundongos Knockout , Microtomografia por Raio-X
14.
J Mech Behav Biomed Mater ; 112: 104003, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32823002

RESUMO

This study aims to investigate the ratcheting-fatigue behaviors of trabecular bone under cyclic tension-compression, which are produced due to the accumulations of residual strain in trabecular bone. Simultaneously, the effects of different loading conditions on ratcheting behaviors of trabecular bone were probed. It is found that the gap between ratcheting strains under three stress amplitudes will gradually widen. As the stress amplitude increases, the ratcheting strain also increases. Mean stress has a significant effect on the ratcheting strain. When the mean stress is 0 MPa and 0.155 MPa, the ratcheting strain increases with the number of cycles. However, when the mean stress is -0.155 MPa, the ratcheting strain decreases as the cycle goes on. The existence of double stress peak holding time causes the creep deformation of trabecular bone, which leads to the increase of ratcheting strain. It is also noted that the ratcheting strain is greatly increased with prolongation of stress peak holding time. The digital image correlation (DIC) technique was applied to analyze the fatigue failure of trabecular bone under cyclic tension-compression. It is found that the increase of stress amplitude accelerates the damage of sample and further reduces its fatigue life. Cracks are observed in trabecular bone sample, and it is noted that the crack propagation is rapid during cyclic loading.


Assuntos
Osso Esponjoso , Força Compressiva , Teste de Materiais , Pressão , Estresse Mecânico
15.
Mol Med ; 26(1): 36, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32354322

RESUMO

BACKGROUND: HDAC4 is a key regulator of chondrocyte hypertrophy and skeletal development, but it is not clear whether the increase in vascular invasion at growth plates is related to HDAC4 expression. To determine it, we investigated the relationship between HDAC4 and angiogenesis in both in vivo and in vitro models. METHODS: HDAC4 was deleted in Col2α1-Cre; HDAC4fl/fl mice. Growth of the Col2α1-Cre; HDAC4d/d mice was compared with HDAC4fl/fl mice at postnatal days 2, 4, 6, and 8. X-rays were taken to examine skeletal development. At postnatal days 14 and 21, mice were euthanized for specimen collection. Murine chondrocytes were isolated from the ventral parts of rib cages of 6-day-old mice (C57Bl/6) and transfected with a vector expressing HDAC4 as a fusion protein with green fluorescent protein (GFP). Relative expression levels of HDAC4, VEGF, and Hif1α were measured in these cells by Western blot, RT-qPCR, enzyme-linked immunosorbent, histology, and immunohistochemistry assays. RESULTS: The Col2α1-Cre; HDAC4d/d mice were markedly smaller compared with the control mice. At postnatal days 14 and 21, the Col2α1-Cre; HDAC4d/d mice exhibited a shortened growth plate, a larger secondary ossification center, and stronger staining of CD31 and CD34 compared to control mice. The isolated chondrocyte cells exhibited a high transfection efficiency of HDAC4 which resulted in the detection of a significant decrease in VEGF and Hif1α levels compared with the control chondrocytes. CONCLUSIONS: HDAC4 expression in chondrocytes contributes to angiogenesis in the growth plate, and its absence in vivo negatively affects growth plates.


Assuntos
Colágeno Tipo II/genética , Deleção de Genes , Expressão Gênica , Histona Desacetilases/genética , Neovascularização Fisiológica/genética , Animais , Biomarcadores , Diferenciação Celular , Condrócitos/metabolismo , Condrogênese/genética , Colágeno Tipo II/metabolismo , Genes Reporter , Histona Desacetilases/metabolismo , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Fenótipo
16.
J Orthop Surg Res ; 15(1): 40, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-32028970

RESUMO

BACKGROUND: Additively manufactured porous metallic structures have recently received great attention for bone implant applications. The morphological characteristics and mechanical behavior of 3D printed titanium alloy trabecular structure will affect the effects of artificial prosthesis replacement. However, the mechanical behavior of titanium alloy trabecular structure at present clinical usage still is lack of in-depth study from design to manufacture as well as from structure to mechanical function. METHODS: A unit cell of titanium alloy was designed to mimick trabecular structure. The controlled microarchitecture refers to a repeating array of unit-cells, composed of titanium alloy, which make up the scaffold structure. Five kinds of unit cell mimicking trabecular structure with different pore sizes and porosity were obtained by modifying the strut sizes of the cell and scaling the cell as a whole. The titanium alloy trabecular structure was fabricated by 3D printing based on Electron Beam Melting (EBM). The paper characterized the difference between the designs and fabrication of trabecular structures, as well as mechanical properties and the progressive collapse behavior and failure mechanism of the scaffold. RESULTS: The actual porosities of the EBM-produced bone trabeculae are lower than the designed, and the load capacity of a bearing is related to the porosity of the structure. The larger the porosity of the structure, the smaller the stiffness and the worse the load capacity is. The fracture interface of the trabecular structure under compression is at an angle of 45o with respect to the compressive axis direction, which conforms to Tresca yield criterion. The trabeculae-mimicked unit cell is anisotropy. Under quasi-static loading, loading speed has no effect on mechanical performance of bone trabecular specimens. There is no difference of the mechanical performance at various orientations and sites in metallic workspace. The elastic modulus of the scaffold decreases by 96%-93% and strength reduction 96%-91%, compared with titanium alloy dense metals structure. The apparent elastic modulus of the unit-cell-repeated scaffold is 0.39-0.618 GPa, which is close to that of natural bone and stress shielding can be reduced. CONCLUSION: We have systematically studied the structural design, fabrication and mechanical behavior of a 3D printed titanium alloy scaffold mimicking trabecula bone. This study will be benefit of the application of prostheses with proper structures and functions.


Assuntos
Ligas/química , Substitutos Ósseos/química , Osso Esponjoso/fisiologia , Teste de Materiais/métodos , Alicerces Teciduais/química , Titânio/química , Ligas/normas , Substitutos Ósseos/normas , Osso Esponjoso/anatomia & histologia , Força Compressiva/fisiologia , Teste de Materiais/normas , Impressão Tridimensional/normas , Estresse Mecânico , Alicerces Teciduais/normas , Titânio/normas
17.
J Biomed Mater Res B Appl Biomater ; 108(4): 1603-1615, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31633296

RESUMO

Ultrahigh molecular weight polyethylene (UHMWPE) artificial joint has remained the preferred polymer component in total joint replacement surgery. However, more and more concerns have been raised about the failure of UHMWPE components due to the initiation and propagation of cracks at the notches with fixed functions. For this reason, biaxial fatigue crack growth (FCG) experiments of UHMWPE reinforced by carbon nanofibers (CNF) and hydroxyapatite (HA) were carried out using elastic-plastic fracture mechanics theory. The FCG resistance of UHMWPE, UHMWPE/CNF, and UHMWPE/HA was compared, and the effects of stress ratio (R) value and phase difference on FCG rate were investigated. At the same time, the influence of loading path was considered, and the corresponding crack path was analyzed. Results suggest that UHMWPE/CNF has better FCG resistance and the FCG rate increases with the increase of R value and the existence of 180° phase difference. In addition, crack bifurcation behavior is not observed under nonproportional loading conditions. The findings in this study will provide experimental validation and data support for better clinical application of UHMWPE-modified materials.


Assuntos
Carbono/química , Durapatita/química , Nanofibras/química , Polietilenos/química
18.
Orthop Surg ; 11(5): 895-902, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31663289

RESUMO

OBJECTIVE: To evaluate the ratcheting behavior of intervertebral discs (IVD) by experiments and theoretical study. METHOD: The lumbar spines of sheep were obtained at a local slaughterhouse, and the IVD was processed with upper and lower vertebral bodies (about 5 mm) to ensure the mechanical state of the IVD in situ. The ratcheting tests of uniaxial cyclic compression loading for disc samples is carried out using the Electronic Universal Fatigue Testing System at room temperature. The effects of different stress variations, stress rates, as well as different segments on ratcheting behavior of discs were investigated. RESULTS: The ratcheting strain evolution of lumbar IVD include stages of sharp increase and asymptotic stability. Both the ratcheting strain and ratcheting strain rate increase with an increase of stress variation (R = 0.962, P = 0.004) but decrease with an increase of the stress rate (R = -0.876, P = 0.019 ). Compression stiffness increases with an increase of the stress rate (R = 0.964, P = 0.004 ) or stress variation (R = 0.838, P = 0.037). Compared with L5 - 6 , the L6 - 7 disc showed less ratcheting strain (P = 0.04 ), indicating that the disc at this segment was more resistant to the impact of the ratcheting cycle. In addition, ratcheting strain evolution was predicted using a ratcheting evolution constitutive equation, and the predicted results were in good agreement with experimental data. CONCLUSIONS: The ratcheting behavior occurs in IVD, and this cumulative deformation is consistent with the general ratcheting behavior. The constitutive equation can predict the ratcheting strain evolution of IVD very well. These results are of great significance for the analysis of defects and the development of repair in IVD.


Assuntos
Força Compressiva , Disco Intervertebral/fisiologia , Vértebras Lombares/fisiologia , Estresse Mecânico , Animais , Fenômenos Biomecânicos , Ovinos
19.
Mater Sci Eng C Mater Biol Appl ; 105: 110018, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31546346

RESUMO

Osteoarthritis is caused by injuries and cartilage degeneration. Cartilage tissue engineering provides new ideas for the treatment of osteoarthritis. Herein, the different ratios composite membranes of silk fibroin/collagen type II were constructed (SF50-50:50, SF70-70:30, SF90-90:10). The surface properties of the composite membranes and chondrocyte morphology were observed by SEM (scanning electron microscopy). Physical functionality as well as stability of composite membranes was evaluated from tensile mechanical properties, the percentage of swelling and degradation. The tensile mechanical behavior of SF70 composite membranes was also predicted based on the constitutive model established in this study, and it is found that the experimental results and predictions were in good agreement. Biocompatibility was evaluated using chondrocytes (ADTC-5) culture. Cell proliferation was analyzed and the treatment of live/dead double staining was performed to assess the viability on chondrocytes. To sum up, SF70 showed the suitable morphology, physical stability, and biological functionality to promote proliferation of chondrocytes. This indicates that the mixing ratio of SF70 shows promise in the future as a scaffold material for cartilage repair.


Assuntos
Materiais Biocompatíveis/química , Colágeno Tipo II/química , Fibroínas/química , Teste de Materiais , Fenômenos Mecânicos , Membranas Artificiais , Animais , Bovinos , Adesão Celular , Linhagem Celular , Proliferação de Células , Forma Celular , Condrócitos/citologia , Condrócitos/ultraestrutura , Humanos , Resistência à Tração
20.
Biomed Eng Online ; 18(1): 85, 2019 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-31362738

RESUMO

BACKGROUND: Ratcheting strain is produced due to the repeated accumulation of compressive strain in cartilage and may be a precursor to osteoarthritis. The aim of this study was to investigate the ratcheting behaviors of young and adult articular cartilages under cyclic compression by experiments and theoretical predictions. METHODS: A series of uniaxial cyclic compression tests were conducted for young and adult cartilage, and the effects of different loading conditions on their ratcheting behaviors were probed. A theoretical ratcheting model was constructed and applied to predict the ratcheting strains of young and adult cartilages with different loading conditions. RESULTS: Ratcheting strains of young and adult cartilages rapidly increased at the initial stage, followed by a slower increase in subsequent stages. The strain accumulation value and its rate for young cartilage were greater than them for adult cartilage. The ratcheting strains of the two groups of cartilage samples decreased with increasing stress rate, while they increased with increasing stress amplitude. As the stress amplitude increased, the gap between the ratcheting strains of young and adult cartilages increased gradually. The ratcheting strains of young and adult cartilages decreased along the cartilage depth from the surface to the deep layer. The ratcheting strains of different layers increased with the compressive cycle, and the difference among the three layers was noticeable. Additionally, the theoretical predictions agreed with the experimental data. CONCLUSIONS: Overall, the ratcheting behavior of articular cartilage is affected by the degree of articular cartilage maturation.


Assuntos
Cartilagem Articular , Teste de Materiais , Estresse Mecânico , Envelhecimento/fisiologia , Animais , Fenômenos Biomecânicos , Cartilagem Articular/fisiologia , Força Compressiva , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...