Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 243
Filtrar
1.
Plant Physiol Biochem ; 211: 108670, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38703501

RESUMO

Plants would encounter various biotic and abiotic stresses during the growth and development. WRKY transcription factors (TFs) as plant-specific TFs, play an important role in responding to various adverse circumstances. Despite some advances were achieved in functional studies of WRKY TFs in tea plants, systematic analysis of the involvement of CsWRKY TFs when facing cold, salt, drought stresses and pathogen and insect attack was lacked. In present study, a total of 78 CsWRKY TFs were identified following the genomic and transcript databases. The expression patterns of CsWRKYs in various organs of tea plants and the expression profiles in response to biotic and abiotic stresses were investigated by examining representative RNA-seq data. Moreover, the effects of hormone treatments (SA and MeJA) on the transcription levels of WRKY TFs were also investigated. The phylogenetic tree of CsWRKY TFs from different species indicated the functional diversity of WRKY TFs was not closely related to their protein classification. Concurrently, CsWRKY70-2 TF was identified as a positive regulator in response to drought stress. This study provided solid and valuable information, helping us better understand the functional diversity of CsWRKY TFs, and laid the foundation for further research on the function of key WRKY genes in tea plants.


Assuntos
Camellia sinensis , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas , Estresse Fisiológico , Fatores de Transcrição , Camellia sinensis/genética , Camellia sinensis/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Secas , Genoma de Planta , Ciclopentanos/metabolismo , Ciclopentanos/farmacologia , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacologia , Oxilipinas/farmacologia , Oxilipinas/metabolismo , Acetatos/farmacologia
2.
J Psychiatry Neurosci ; 49(3): E192-E207, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38816029

RESUMO

BACKGROUND: Recent studies have identified empathy deficit as a core impairment and diagnostic criterion for people with autism spectrum disorders; however, the improvement of empathy focuses primarily on behavioural interventions without the target regulation. We sought to compare brain regions associated with empathy-like behaviours of fear and pain, and to explore the role of the oxytocin-oxytocin receptor system in fear empathy. METHODS: We used C57BL mice to establish 2 models of fear empathy and pain empathy. We employed immunofluorescence histochemical techniques to observe the expression of c-Fos throughout the entire brain and subsequently quantified the number of c-Fos-positive cells in different brain regions. Furthermore, we employed chemogenetic technology to selectively manipulate these neurons in Oxt-Cre-/+ mice to identify the role of oxytocin in this process. RESULTS: The regions activated by fear empathy were the anterior cingulate cortex, basolateral amygdala, nucleus accumbens, paraventricular nucleus (PVN), lateral habenula, and ventral and dorsal hippocampus. The regions activated by pain empathy were the anterior cingulate cortex, basolateral amygdala, nucleus accumbens, and lateral habenula. We found that increasing the activity of oxytocin neurons in the PVN region enhanced the response to fear empathy. This enhancement may be mediated through oxytocin receptors. LIMITATIONS: This study included only male animals, which restricts the broader interpretation of the findings. Further investigations on circuit function need to be conducted. CONCLUSION: The brain regions implicated in the regulation of fear and pain empathy exhibit distinctions; the activity of PVN neurons was positively correlated with empathic behaviour in mice. These findings highlight the role of the PVN oxytocin pathway in regulating fear empathy and suggest the importance of oxytocin signalling in mediating empathetic responses.


Assuntos
Empatia , Medo , Camundongos Endogâmicos C57BL , Neurônios , Ocitocina , Núcleo Hipotalâmico Paraventricular , Animais , Ocitocina/metabolismo , Masculino , Núcleo Hipotalâmico Paraventricular/metabolismo , Medo/fisiologia , Empatia/fisiologia , Neurônios/metabolismo , Camundongos , Receptores de Ocitocina/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Dor/fisiopatologia , Dor/psicologia , Camundongos Transgênicos
3.
Heliyon ; 10(9): e30330, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38726177

RESUMO

Background: Colon cancer (CC) stem cells can self-renew as well as expand, thereby promoting tumor progression and conferring resistance to chemotherapeutic agents. The acetyltransferase NAT10 mediates N4-acetylcytidine (ac4C) modification, which in turn drives tumorigenesis, metastasis, stemness properties maintenance, and cell fate decisions. Nonetheless, the specific involvement of ac4C modification mediated by NAT10 in regulating stemness and chemosensitivity in CC remains undetermined. Methods: The levels of NAT10 in normal colon and chemoresistant CC tissues were determined utilizing quantitative real-time polymerase chain reaction alongside immunohistochemistry. Assessing cancer cell stemness and chemosensitivity was conducted by various methods including spheroid and colony formation, western blotting, and flow cytometry. RNA-Seq was used to identify target genes, and RNA immunoprecipitation analysis was used to explore the potential mechanisms. Results: We observed NAT10 overexpression and increased ac4C modification levels in chemoresistant CC tissues. The in vivo and in vitro analysis findings suggested that NAT10 promoted CC cell stemness while suppressing their chemosensitivity. Conversely, Remodelin, a NAT10-specific inhibitor, enhanced CC cell chemosensitivity. Mechanistically, NAT10 increased the level of NANOGP8 ac4C modification and promoted NANOGP8 mRNA stability. Conclusions: NAT10 promotes the maintenance of stemness and chemoresistance in CC cells by augmenting the mRNA stability of NANOGP8. The inhibition of NAT10 via Remodelin improves chemotherapeutic efficacy and impedes CC progression.

4.
Plant Physiol Biochem ; 211: 108726, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38744083

RESUMO

Tea is one of the most prevalent non-alcoholic beverages. The leaves of tea plants hyperaccumulate anthocyanins under cold stress, resulting in enhanced bitterness. Previously, we determined that the RING-type E3 ubiquitin ligase CsMIEL1 from the tea plant (Camellia sinensis (L.) O. Kuntze) is involved in the response to stress conditions. This study aimed to determine the role of CsMIEL1 in anthocyanin accumulation at the post-translational modification level. The results showed that the heterologous expression of CsMIEL1 led to an 86% decrease in anthocyanin levels, resulting in a significant decrease in the mRNA levels of related genes in Arabidopsis at low temperatures but no significant differences in other phenotypes. Furthermore, multi-omics analysis and yeast two-hybrid library screening were performed to identify potential downstream targets of CsMIEL1. The results showed that the overexpression of CsMIEL1 resulted in 45% (448) of proteins being differentially expressed, of which 8% (36) were downregulated in A.thaliana, and most of these differentially expressed proteins (DEPs) were clustered in the plant growth and secondary metabolic pathways. Among the 71 potential targets that may interact with CsMIEL1, CsMYB90 and CsGSTa, which are related to anthocyanin accumulation, were selected. In subsequent analyses, these two proteins were verified to interact with CsMIEL1 via yeast two-hybrid (Y2H) and pull-down analyses in vitro. In summary, we explored the potential mechanism by which the E3 ligase relieves anthocyanin hyperaccumulation at low temperatures in tea plants. These results provide a new perspective on the mechanisms of anthocyanin regulation and the molecular breeding of tea plants.


Assuntos
Antocianinas , Camellia sinensis , Temperatura Baixa , Proteínas de Plantas , Antocianinas/metabolismo , Camellia sinensis/metabolismo , Camellia sinensis/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas , Arabidopsis/genética , Arabidopsis/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Plantas Geneticamente Modificadas/metabolismo
5.
Mol Neurobiol ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38664301

RESUMO

Neuroinflammation is a common pathological feature in a number of neurodegenerative diseases, which is mediated primarily by the activated glial cells. Nucleotide-binding oligomerization domain-like receptor pyrin domain-containing-3 (NLRP3) inflammasome-associated neuroinflammatory response is mostly considered. To investigate the situation of the NLRP3-related inflammation in prion disease, we assessed the levels of the main components of NLRP3 inflammasome and its downstream biomarkers in the scrapie-infected rodent brain tissues. The results showed that the transcriptional and expressional levels of NLRP3, caspase-1, and apoptosis-associated speck-like protein (ASC) in the brains of scrapie-infected rodents were significantly increased at terminal stage. The increased NLPR3 overlapped morphologically well with the proliferated GFAP-positive astrocytes, but little with microglia and neurons. Using the brain samples collected at the different time-points after infection, we found the NLRP3 signals increased in a time-dependent manner, which were coincidental with the increase of GFAP. Two main downstream cytokines, IL-1ß and IL-18, were also upregulated in the brains of prion-infected mice. Moreover, the gasdermin D (GSDMD) levels, particularly the levels of GSDMD-NT, in the prion-infected brain tissues were remarkably increased, indicating activation of cell pyroptosis. The GSDMD not only co-localized well with the astrocytes but also with neurons at terminal stage, also showing a time-dependent increase after infection. Those data indicate that NLRP3 inflammasomes were remarkably activated in the infected brains, which is largely mediated by the proliferated astrocytes. Both astrocytes and neurons probably undergo a pyroptosis process, which may help the astrocytes to release inflammatory factors and contribute to neuron death during prion infection.

6.
J Sci Food Agric ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38497362

RESUMO

BACKGROUND: Due to the high level of organic acids - primarily citric acid - black, red, and white currants have an excessively sour taste, making taste adjustment during processing challenging. This study investigated and evaluated the effects of an inoculation dose of the acid-reducing yeast Issatchenkia terricola WJL-G4 on several aspect such as physicochemical properties, chromaticity, active substances, and antioxidant capacity. A sensory evaluation was also conducted. RESULTS: The results indicated that, when the inoculation dose increased from 2% to 12%, the total phenol, total flavonoid, and total anthocyanin content, and antioxidant capacity in currant juice decreased. A low inoculation dose (2-4%) was beneficial for preserving the total phenol and total flavonoid content. Although the levels of most phenolic compounds decreased, the concentrations of caffeic acid, p-coumaric acid, ferulic acid, rutin, and epicatechin were significantly higher than the control after fermentation. Overall acceptability and taste scores of fermented currants improved compared with those of the control group. CONCLUSION: This experiment provided an effective solution, with a theoretical basis, to the problems of the sour taste and harsh flavor of currant juice. © 2024 Society of Chemical Industry.

7.
J Sci Food Agric ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38477353

RESUMO

BACKGROUND: Root-zone hole fertilization has a positive impact on enhancing crop production and fertilization efficiency. However, a suitable spacing for hole fertilization in rapeseed cultivation is unclear. To explore an adaptive hole spacing for improving rapeseed yield and fertilization efficiency, field experiments were conducted. Four spacings of hole fertilization were designed: 10 (FD10), 20 (FD20), 30 (FD30) and 40 cm (FD40), using no fertilization (F0) and deep-banded placement of fertilizer (DBP) as controls. The burial depth was 10 cm for FD and DBP treatments. RESULTS: Compared to DBP, hole fertilization impacted soil microenvironment, crop growth and yield components, resulting in a significant increase of 28.4% in seed yield and 25.6% in oil yield. Seed yield in FD20 (4345.43 kg ha-1) increased by 4.3%, 9.4% and 15.1% compared to FD10, FD30 and FD40, respectively. Fertilizer partial factor productivity under FD20 was 4.2%, 8.6% and 13.9% greater than FD10, FD30 and FD40, respectively; whereas the increase for agronomic efficiency was 6.0%, 12.7% and 21.0%, and the increase for N recovery efficiency was 39.5%, 52.5% and 62.9%, respectively. CONCLUSION: Fertilization with a hole spacing of 17 cm is a promising practice to maintain high production and fertilization efficiency when cultivating rapeseed. These results provide a theoretical foundation and scientific basis for improving rapeseed productivity and fertilizer utilization. © 2024 Society of Chemical Industry.

8.
Surg Laparosc Endosc Percutan Tech ; 34(2): 136-142, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38462904

RESUMO

OBJECTIVE: In this study, we aimed to evaluate the efficacy of the Magnetic Scope Guide Assist (ScopeGuide) in enhancing the procedural competence of endoscopists and reducing patient discomfort during colonoscopy. METHODS: This was a retrospective study with 88 trainee participants. The study participants were trained on patients who underwent colonoscopy without anesthesia. Both ScopeGuide-assisted training and conventional training (without ScopeGuide) were utilized for colonoscopy instruction. The outcomes of training were compared, with a particular emphasis on the competency of looping resolution. RESULTS: ScopeGuide-assisted training was superior to conventional training in multiple aspects, including looping resolution ( Z =-3.681, P <0.001), pain scores ( Z =-4.211, P <0.001), time to reach the cecum ( Z =-4.06, P <0.001), willingness to undergo repeat colonoscopy ( Z =-4.748, P <0.001), competence of positional changes ( Z =-4.079, P <0.001), and the effectiveness of assisted compression ( Z =-3.001, P =0.003). Further stratified analysis revealed that the ScopeGuide-assisted training mode was more beneficial for junior endoscopists ( P <0.05 in all parameters) but not for intermediate endoscopists ( P >0.05) and partially beneficial for senior endoscopists ( P <0.05 for all parameters except looping resolution). CONCLUSION: ScopeGuide-assisted training can significantly facilitate endoscopists in resolving loops and reducing patient pain, thereby enhancing their colonoscopy abilities.


Assuntos
Ceco , Colonoscopia , Humanos , Estudos Retrospectivos , Dor/etiologia , Dor/prevenção & controle , Competência Clínica
9.
Front Neurol ; 15: 1268433, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38440116

RESUMO

Background and objective: Stent-assisted coil (SAC) embolization is a commonly used endovascular treatment for unruptured intracranial aneurysms (UIAs) but can be associated with symptomatic delayed intracerebral hemorrhage (DICH). Our study aimed to investigate the hemodynamic risk factors contributing to DICH following SAC embolization and to establish a classification for DICH predicated on hemodynamic profiles. Methods: This retrospective study included patients with UIAs located in the internal carotid artery (ICA) treated with SAC embolization at our institution from January 2021 to January 2022. We focused on eight patients who developed postoperative DICH and matched them with sixteen control patients without DICH. Using computational fluid dynamics, we evaluated the hemodynamic changes in distal arteries [terminal ICA, the anterior cerebral artery (ACA), and middle cerebral artery (MCA)] pre-and post-embolization. We distinguished DICH-related arteries from unrelated ones (ACA or MCA) and compared their hemodynamic alterations. An imbalance index, quantifying the differential in flow velocity changes between ACA and MCA post-embolization, was employed to gauge the flow distribution in distal arteries was used to assess distal arterial flow distribution. Results: We identified two types of DICH based on postoperative flow alterations. In type 1, there was a significant lower in the mean velocity increase rate of the DICH-related artery compared to the unrelated artery (-47.25 ± 3.88% vs. 42.85 ± 3.03%; p < 0.001), whereas, in type 2, there was a notable higher (110.58 ± 9.42% vs. 17.60 ± 4.69%; p < 0.001). Both DICH types demonstrated a higher imbalance index than the control group, suggesting an association between altered distal arterial blood flow distribution and DICH occurrence. Conclusion: DICH in SAC-treated UIAs can manifest as either a lower (type 1) or higher (type 2) in the rate of velocity in DICH-related arteries. An imbalance in distal arterial blood flow distribution appears to be a significant factor in DICH development.

10.
Plant J ; 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38461478

RESUMO

Flavan-3-ols are prominent phenolic compounds found abundantly in the young leaves of tea plants. The enzymes involved in flavan-3-ol biosynthesis in tea plants have been extensively investigated. However, the localization and associations of these numerous functional enzymes within cells have been largely neglected. In this study, we aimed to investigate the synthesis of flavan-3-ols in tea plants, particularly focusing on epigallocatechin gallate. Our analysis involving the DESI-MSI method to reveal a distinct distribution pattern of B-ring trihydroxylated flavonoids, primarily concentrated in the outer layer of buds. Subcellular localization showed that CsC4H, CsF3'H, and CsF3'5'H localizes endoplasmic reticulum. Protein-protein interaction studies demonstrated direct associations between CsC4H, CsF3'H, and cytoplasmic enzymes (CHS, CHI, F3H, DFR, FLS, and ANR), highlighting their interactions within the biosynthetic pathway. Notably, CsF3'5'H, the enzyme for B-ring trihydroxylation, did not directly interact with other enzymes. We identified cytochrome b5 isoform C serving as an essential redox partner, ensuring the proper functioning of CsF3'5'H. Our findings suggest the existence of distinct modules governing the synthesis of different B-ring hydroxylation compounds. This study provides valuable insights into the mechanisms underlying flavonoid diversity and efficient synthesis and enhances our understanding of the substantial accumulation of B-ring trihydroxylated flavan-3-ols in tea plants.

11.
Front Mol Neurosci ; 17: 1341886, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38390431

RESUMO

Background and purpose: Calmodulin (CaM) levels exhibit significant elevation in the brain tissue of rodent and cell line models infected with prion, as well as in the cerebrospinal fluid (CSF) samples from patients diagnosed with sporadic Creutzfeldt-Jakob disease (sCJD). However, the status of CSF CaM in patients with genetic prion diseases (gPrDs) remains unclear. This study aims to assess the characteristics of CSF CaM in Chinese patients presenting four subtypes of gPrDs. Methods: A total of 103 CSF samples from patients diagnosed with T188K-gCJD, E200K-gCJD, D178N-FFI, P102L-GSS were included in this study, along with 40 CSF samples from patients with non-prion diseases (non-PrDs). The presence of CSF CaM and 14-3-3 proteins was assessed using Western blots analysis, while levels of CSF 14-3-3 and total tau were measured using enzyme-linked immunosorbent assays (ELISAs). Statistical methods including multivariate logistic regression were employed to evaluate the association between CSF CaM positivity and relevant clinical, laboratory, and genetic factors. Results: The positive rates of CSF CaM were significantly higher in cases of T188K-gCJD (77.1%), E200K-gCJD (86.0%), and P102-GSS (90.9%) compared to non-PrD cases (22.5%). In contrast, CSF CaM positivity was slightly elevated in D178N-FFI (34.3%). CSF CaM positivity was remarkably high in patients who tested positive for CSF 14-3-3 by Western blot and exhibited high levels of total tau (≥1400 pg/ml) as measures by ELISA. Multivariate logistic regression analysis confirmed a significant association between CSF CaM positivity and specific mutations in PRNP, as well as with CSF 14-3-3 positivity. Furthermore, the diagnostic performance of CaM surpassed that of 14-3-3 and tau when analyzing CSF samples from T188K-gCJD and E200K-gCJD patients. Conclusion: Western blot analysis reveals significant variations in the positivity of CSF CaM among the four genotypes of gPrD cases, demonstrating a positive correlation with 14-3-3 positivity and elevated tau levels in CSF.

12.
J Nutr Biochem ; 125: 109570, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38218348

RESUMO

High salt diet (HSD) is a risk factor of hypertension and cardiovascular disease. Although clinical data do not clearly indicate the relationship between HSD and the prevalence of Alzheimer's disease (AD), animal experiments have shown that HSD can cause hyperphosphorylation of tau protein and cognition impairment. However, whether HSD can accelerate the progression of AD by damaging the function of neurovascular unit (NVU) in the brain is unclear. Here, we fed APP/PS1 mice (an AD model) or wild-type mice with HSD and found that the chronic HSD feeding increased the activity of enzymes related to tau phosphorylation, which led to tau hyperphosphorylation in the brain. HSD also aggravated the deposition of Aß42 in hippocampus and cortex in the APP/PS1 mice but not in the wild-type mice. Simultaneously, HSD caused the microglia proliferation, low expression of Aqp-4, and high expression of CD31 in the wild-type mice, which were accompanied with the loss of pericytes (PCs) and increase in blood brain barrier (BBB) permeability. As a result, wild-type mice fed with HSD performed poorly in Morris Water Maze and object recognition test. In the APP/PS1 mice, HSD feeding for 8 months worsen the cognition and accompanied the loss of PCs, the activation of glia, the increase in BBB permeability, and the acceleration of calcification in the brain. Our data suggested that HSD feeding induced the AD-like pathology in wild-type mice and aggravated the development of AD-like pathology in APP/PS1 mice, which implicated the tau hyperphosphorylation and NVU dysfunction.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Camundongos Transgênicos , Proteínas tau/metabolismo , Dieta , Cognição , Cloreto de Sódio na Dieta/efeitos adversos , Modelos Animais de Doenças , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo
13.
Emerg Microbes Infect ; 13(1): 2290839, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38039063

RESUMO

Brucellosis is a commonly neglected zoonosis that remains a serious global public health concern. The epidemiological evolution of human brucellosis has considerably changed over the past few decades, and epidemic geography is continuously expanding. Human brucellosis is emerging and re-emerging, and is imported from areas where it is endemic due to travel, immigration, and international trade. The disease continues to be prevalent in Asia and Africa, including West Asia, Central Asia, North Africa, and East Africa, with the highest incidence in Syria, Kyrgyzstan, Mongolia, Iran, Algeria, and Kenya. Re-emerging cases are frequently recorded in places where brucellosis has been controlled, such as Bosnia, Herzegovina, Azerbaijan, and the USA. In countries with a high disease burden, disease control and eradication have been extremely difficult because of livestock farming being the only source of livelihood, unique religious beliefs regarding animals, nomadic lifestyle, and low socioeconomic levels. Interventions focused on protecting livestock keepers are needed, particularly for those assisting with goat and sheep births and the consumption of raw dairy products. Notably, in most countries with a high disease burden, each period of several years with a low incidence rate was followed by a subsequent increase in cases, highlighting the necessity of continuous investment and surveillance. In addition, advocacy for the inclusion of brucellosis as a globally mandated reported disease, strict restrictions on animal movement, mandated consumption of pasteurized milk, and health education are needed. This study will help form an evidence-based strategy for international organizations to curb the future spread of brucellosis.


Assuntos
Brucelose , Comércio , Humanos , Animais , Ovinos , Internacionalidade , Brucelose/epidemiologia , Brucelose/veterinária , Zoonoses/epidemiologia , Cabras , Quênia
14.
Plant Cell Environ ; 47(2): 698-713, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37882465

RESUMO

Tea is an important cash crop that is often consumed by chewing pests, resulting in reduced yields and economic losses. It is important to establish a method to quickly identify the degree of damage to tea plants caused by leaf-eating insects and screen green control compounds. This study was performed through the combination of deep learning and targeted metabolomics, in vitro feeding experiment, enzymic analysis and transient genetic transformation. A small target damage detection model based on YOLOv5 with Transformer Prediction Head (TPH-YOLOv5) algorithm for the tea canopy level was established. Orthogonal partial least squares (OPLS) was used to analyze the correlation between the degree of damage and the phenolic metabolites. A potential defensive compound, (-)-epicatechin-3-O-caffeoate (EC-CA), was screened. In vitro feeding experiments showed that compared with EC and epicatechin gallate, Ectropis grisescens exhibited more significant antifeeding against EC-CA. In vitro enzymatic experiments showed that the hydroxycinnamoyl transferase (CsHCTs) recombinant protein has substrate promiscuity and can catalyze the synthesis of EC-CA. Transient overexpression of CsHCTs in tea leaves effectively reduced the degree of damage to tea leaves. This study provides important reference values and application prospects for the effective monitoring of pests in tea gardens and screening of green chemical control substances.


Assuntos
Camellia sinensis , Aprendizado Profundo , Lepidópteros , Animais , Camellia sinensis/metabolismo , Insetos , Chá/química , Chá/metabolismo
15.
Hortic Res ; 10(12): uhad222, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38077497

RESUMO

Tea (Camellia sinensis) is a well-known beverage crop rich in polyphenols with health benefits for humans. Understanding how tea polyphenols participate in plant resistance is beneficial to breeding resistant varieties and uncovering the resistance mechanisms. Here, we report that a Colletotrichum infection-induced 'pink ring' symptom appeared outside the lesion, which is highly likely to occur in resistant cultivars. By identifying morphological feature-specific metabolites in the pink ring and their association with disease resistance, and analysis of the association between metabolite and gene expression, the study revealed that the accumulation of anthocyanin-3-O-galactosides, red phytotoxin compounds resistant to anthracnose, plays a pivotal role in the hypersensitive response surrounding infection sites in tea plants. The results of genetic manipulation showed that the expression of CsF3Ha, CsANSa, CsUGT78A15, CsUGT75L43, and CsMYB113, which are involved in anthocyanin biosynthesis, is positively correlated with anthracnose-resistance and the formation of the pink ring. Further phosphorus quantification and fertilization experiments confirmed that phosphate deficiency caused by anthracnose is involved in the occurrence of the pink ring. Genetic manipulation studies indicated that altering the expression levels of Pi transporter proteins (CsPHT2-1, CsPHT4;4) and phosphate deprivation response transcription factors (CsWRKY75-1, CsWRKY75-2, CsMYB62-1) enhances resistance to anthracnose and the formation of the pink ring symptom in tea plants. This article provides the first evidence that anthocyanin-3-O-galactosides are the anthracnose-resistant phytoalexins among various polyphenols in tea plants, and this presents an approach for identifying resistance genes in tea plants, where genetic transformation is challenging.

16.
J Agric Food Chem ; 71(48): 18999-19009, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37997954

RESUMO

Camellia sinensis contains numerous glycosylated secondary metabolites that provide various benefits to plants and humans. However, the genes that catalyze the glycosylation of multitype metabolites in tea plants remain unclear. Here, 180 uridine diphosphate-dependent glycosyltransferases that may be involved in the biosynthesis of glycosylated secondary metabolites were identified from the National Center for Biotechnology Information public databases. Subsequently, CsUGT74Y1 was screened through phylogenetic analysis and gene expression profiling. Compositional and induced expression analyses revealed that CsUGT74Y1 was highly expressed in tea tender shoots and was induced under biotic and abiotic stress conditions. In vitro enzymatic assays revealed that rCsUGT74Y1 encoded a multifunctional UGT that catalyzed the glycosylation of flavonoids, phenolic acids, lignins, and auxins. Furthermore, CsUGT74Y1-overexpressing Arabidopsis thaliana exhibited enhanced growth and accumulation of flavonol and auxin glucosides. Our findings provide insights into identifying specific UGTs and demonstrate that CsUGT74Y1 is a multifunctional UGT that promotes plant development.


Assuntos
Camellia sinensis , Glicosiltransferases , Humanos , Glicosilação , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Difosfato de Uridina/metabolismo , Filogenia , Plantas/metabolismo , Camellia sinensis/metabolismo , Chá/metabolismo
17.
China CDC Wkly ; 5(43): 958-965, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-38025513

RESUMO

Introduction: Human prion diseases (PrDs) are rare, fatal encephalopathies requiring comprehensive diagnostic analysis. This study examines hospital referral patterns to the Chinese National Surveillance for Creutzfeldt-Jakob Disease (CNS-CJD) from 2006 to 2019. Methods: We assessed 1,970 PrD cases referred by various hospitals to CNS-CJD. Referral distributions were analyzed based on provincial-level administrative divisions (PLADs). Differences in referral numbers and confirmed cases between monitored and non-monitored PLADs were statistically evaluated. Results: The study included cases from 344 hospitals across 29 Chinese PLADs. Hospital referrals increased over the surveillance years: from 28.2 hospitals annually during 2006-2010, to 64 in 2011-2015, and 107 in 2016-2019. Of these, 12.2% (42/344) of hospitals reported ≥10 PrD cases, accounting for 70.0% (1,379/1,970) of total cases. Referral numbers varied across PLADs, with the top 5 of Beijing (41), Henan (26), Shanghai (21), Guangdong (21), and Jiangsu (21) leading. Additionally, 12 CJD-surveillance PLADs had more referring hospitals and PrD cases than the other 17 non-surveillance PLADs. Conclusions: Geographical variations in PrD recognition exist across Chinese PLADs, with certain regions and major cities reporting notably higher case numbers.

18.
Artigo em Inglês | MEDLINE | ID: mdl-37855350

RESUMO

BACKGROUND: Chronic glomerulonephritis (CGN) is a primary glomerular disease. As a circulating protein, growth and differentiation factor 15 (GDF15) participates in a variety of biological processes. OBJECTIVE: We aimed to investigate the role of GDF15 in CGN. METHODS: HBZY-1 cells were induced by lipopolysaccharide (LPS). Cell viability was detected using a cell counting kit-8 (CCK-8) assay, and a western blot was applied for the detection of GDF15 protein expression. After GDF15 silencing, cell proliferation was evaluated by CCK-8 assay and 5-ethynyl-2'-deoxyuridine (EDU) staining. Enzyme-linked immunosorbent assay (ELISA) kits were used to detect the levels of inflammatory cytokines. Autophagy was assessed by GFP-LC3B assay. Besides, the expression of NF-κB signaling-, autophagy- (LC3II/I, Beclin l and p62) and phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mechanistic target of rapamycin (mTOR) signaling-related proteins were measured by western blot. Afterwards, PI3K agonist 740Y-P was used to clarify whether GDF15 affected LPS-induced HBZY-1 cells via PI3K/AKT/mTOR signaling. RESULTS: LPS induction increased cell viability and elevated GDF15 expression in HBZY-1 cells. After GDF15 expression depletion, the increased proliferation of LPS-induced HBZY-1 cells was decreased. Additionally, GDF15 knockdown suppressed the release of inflammatory factors in LPS-induced HBZY-1 cells and activated autophagy. Moreover, the PI3K/AKT/ mTOR signal was evidenced to be activated by GDF15 deficiency. The further addition of 740Y-P reversed the impacts of GDF15 deficiency on the proliferation, inflammation, and autophagy of LPS-induced HBZY-1 Conclusion: Collectively, GDF15 downregulation could protect against CGN via blocking PI3K/AKT/mTOR signaling.

19.
Acta Biomater ; 172: 395-406, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37866724

RESUMO

Supramolecular organic frameworks (SOFs) have emerged as a promising class of organic porous materials with vast potential as nanocarriers for combination therapy. Here, we successfully construct an anionic flexible supramolecular organic framework (TPP-SOF) by leveraging multiple host-guest interactions. TPP-SOF is fabricated by the hierarchical orthogonal assembly between anionic water-soluble dimacrocyclic host (P5CD), porphyrin photosensitizers (TPP), and ROS-sensitive thioketal linked adamantane dimer (Ada-S-Ada). TPP-SOF exhibits pH-dependent activation of 1O2 production, which further facilitates the cleavage of Ada-S-Ada linker and promotes the disintegration of the framework. Moreover, leveraging electrostatic and hydrophobic interactions, the anionic TPP-SOF serves as an effective platform for loading cationic photosensitizer IR780 and chemotherapeutic prodrug PhenPt(IV), leading to the formation of supramolecular nanoparticles (IR780/Pt@TPP-SOF) for synergistic therapy. The obtained nanoparticles exhibit good stability, efficient generation of 1O2, and photothermal performance. In vitro and in vivo studies indicate that IR780/Pt@TPP-SOF exhibits remarkable synergistic chemo/PDT/PTT effects under 808 and 660 nm light irradiation. This study showcases a deep insight for the development of SOFs and a new approach for delivering cationic drugs and constructing synergistic combination therapy systems. STATEMENT OF SIGNIFICANCE: In this work, a pH/ROS-responsive anionic flexible supramolecular organic framework, TPP-SOF, was innovatively designed by the hierarchical orthogonal assembly, to co-deliver cationic photosensitizer IR780 and prodrug PhenPt(IV) for synergistic cancer therapy. The drug-loaded TPP-SOF is termed IR780/Pt@TPP-SOF, in which the photoactivity of porphyrin within TPP-SOF could be activated under acidic conditions, the 1O2 generated by the photosensitizers could break the thioketal bonds in Ada-S-Ada, leading to the disassembly of the framework and releasing the drugs. This supramolecular drug delivery system displays good biocompatibility and exhibits remarkable synergistic chemo/PDT/PTT effects.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Porfirinas , Pró-Fármacos , Humanos , Fármacos Fotossensibilizantes/química , Pró-Fármacos/química , Espécies Reativas de Oxigênio/química , Polímeros/química , Nanopartículas/química , Porfirinas/farmacologia , Porfirinas/química , Concentração de Íons de Hidrogênio , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico
20.
Front Neurol ; 14: 1236757, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37869148

RESUMO

Introduction: Posterior communicating artery (Pcom) aneurysm has unique morphological characteristics and a high recurrence risk after coil embolization. This study aimed to evaluate the relationship between the recurrence-related morphology characteristics and hemodynamics. Method: A total of 20 patients with 22 Pcom aneurysms from 2019 to 2022 were retrospectively enrolled. The recurrence-related morphology parameters were measured. The hemodynamic parameters were simulated based on finite element analysis and computational fluid dynamics. The hemodynamic differences before and after treatment caused by different morphological features and the correlation between these parameters were analyzed. Result: Significant greater postoperative inflow rate at the neck (Qinflow), relative Qinflow, inflow concentration index (ICI), and residual flow volume (RFV) were reported in the aneurysms with wide neck (>4 mm). Significant greater postoperative RFV were reported in the aneurysms with large size (>7 mm). Significant greater postoperative Qinflow, relative Qinflow, and ICI were reported in the aneurysms located on the larteral side of the curve. The bending angle of the internal carotid artery at the initiation of Pcom (αICA@PCOM) and neck diameter had moderate positive correlations with Qinflow, relative Qinflow, ICI, and RFV. Conclusion: The morphological factors, including aneurysm size, neck diameter, and αICA@PCOM, are correlated with the recurrence-inducing hemodynamic characteristics even after fully packing. This provides a theoretical basis for evaluating the risk of aneurysm recurrence and a reference for selecting a surgical plan.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...