Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 217
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(26): 11727-11736, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38836508

RESUMO

Satellite evidence indicates a global increase in lacustrine algal blooms. These blooms can drift with winds, resulting in significant changes of the algal biomass spatial distribution, which is crucial in bloom formation. However, the lack of long-term, large-scale observational data has limited our understanding of bloom drift. Here, we have developed a novel method to track the drift using multi-source remote sensing satellites and presented a comprehensive bloom drift data set for four typical lakes: Lake Taihu (China, 2011-2021), Lake Chaohu (China, 2011-2020), Lake Dianchi (China, 2003-2021), and Lake Erie (North America, 2003-2021). We found that blooms closer to the water surface tend to drift faster. Higher temperatures and lower wind speeds bring blooms closer to the water surface, therefore accelerating drift and increasing biomass transportation. Under ongoing climate change, algal blooms are increasingly likely to spread over larger areas and accumulate in downwind waters, thereby posing a heightened risk to water resources. Our research greatly improves the understanding of algal bloom dynamics and provides new insights into the driving factors behind the global expansion of algal blooms. Our bloom-drift-tracking methodology also paves the way for the development of high-precision algal bloom prediction models.


Assuntos
Mudança Climática , Eutrofização , Lagos , Monitoramento Ambiental/métodos , Vento , Biomassa , China , Tecnologia de Sensoriamento Remoto
2.
J Hazard Mater ; 472: 134597, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38759281

RESUMO

The 10 µm polystyrene and polyethylene-terephthalate microplastics (MPs), prevalent in finished drink water, were employed to investigate the effect of normal dosage UVC-based advanced-oxidation-processes (UVC-AOPs) on the interaction between MPs and their derived disinfection-byproducts (DBPs) during subsequent chlorination-disinfection, in the presence of Br-, for the first time. The results indicated that UVC/H2O2 caused higher leaching of microplastic-derived dissolved-organic-matter (MP-DOM), with smaller and narrower molecular-weight-distribution than UVC and UVC/peroxymonosulfate (UVC/PMS). The trihalomethanes (as dominant DBPs) molar-formation-potentials (THMs-MFPs) for MP-DOM leached in different UVC-AOPs followed the order of UVC/H2O2>UVC/PMS>UVC. The adsorption of formed THMs, especially Br-THMs, back on MPs was observed in all MPs suspensions with or without UVC-AOPs pre-treatment. The Cl-THMs adsorption by MPs is more sensitive to UVC-AOPs than Br-THMs. The adsorption experiments showed that UVC-AOPs reduce the capacity but increase the rate of THMs adsorption by MPs, suggesting the halogen and hydrogen bonding forces governed the THMs adsorption rate while hydrophobic interaction determines their adsorption capacity. The UVC-AOPs pre-treatment sharply increased the total yield of THMs via both indirectly inducing MP-DOM leaching and directly increasing the THMs-MFPs of MPs by oxidation. 21.36-41.96% of formed THMs adsorbed back on the UVC-AOPs-pretreated MPs, which might increase the toxicity of MPs.

3.
RSC Adv ; 13(31): 21537-21544, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37469964

RESUMO

Disinfection by-products (DBPs) formed in chlorination and chloramination are proved to be cytotoxic and genotoxic and arouse increasing attention. However, previous studies of DBP precursors mainly focused on free amino acids (AAs) and few papers evaluated DBPs' formation potential of combined AAs. This study demonstrated that typical carbonaceous (C-) DBPs, trihalomethanes (THMs) and typical nitrogenous (N-) DBPs, dichloroacetonitrile (DCAN), trichloroacetonitrile (TCAN) and trichloronitromethane (TCNM) could be formed during chlorination and chloramination of polymyxin B sulfate (PBS), a common polypeptide antibiotic working against Gram-negative bacterial infections. The effects of major parameters, including disinfectant dose, contact time, solution pH, temperature, bromide concentration and chloramination mode were evaluated in batch experiments. Different kinds of DBPs exhibited different characteristics as disinfectant dose or contact time increased. Solution pH and temperature affected the formation of DBPs greatly. The formation pathways of different DBPs from chlor(am)ination of PBS were also proposed. Combined AAs, such as PBS, were proved to be important precursors of DBPs during disinfections.

4.
Chemosphere ; 335: 139084, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37263504

RESUMO

Herein, BiFeO3 nanorods (BFO NRs) was synthesized as the piezoelectric catalyst. The synergistic mechanism of sonolysis and sono-induced BFO-piezocatalysis in atenolol degradation was revealed and the effect of ultrasonic parameters on it was investigated for the first time. The results indicated that 100 kHz was the optimal frequency for the sonolytic and sono-piezocatalytic degradation of atenolol in ultrasound/BFO nanorods (US/BFO NRs) system, with the highest synergistic coefficient of 3.43. The piezoelectric potential differences of BFO NRs by COMSOL Multiphysics simulations further distinguishing that the impact of cavitation shock wave and ultrasonic vibration from sonochemistry reaction (i.e., 2.48, -2.48 and 6.60 V versus 0.008, -0.008 and 0.02 V under tensile, compressive and shear stress at 100 kHz). The latter piezoelectric potentials were insufficient for reactive-oxygen-species (ROS) generation, while the former contributed to 53.93% •OH yield in US/BFO NRs system. Sono-piezocatalysis was found more sensitive to ultrasonic power density than sonolysis. The quenching experiments and ESR tests indicated that the ROS contribution in atenolol degradation followed the order of •OH > 1O2 > h+ > O2•- in US/BFO NRs system and 1O2 generation is exclusively dissolved-oxygen dependent. Four degradation pathways for atenolol in US/BFO NRs system were proposed via products identification and DFT calculation. Toxicity assessment by ECOSAR suggested the toxicity of the degradation products could be controlled.


Assuntos
Atenolol , Nanotubos , Espécies Reativas de Oxigênio , Ultrassom , Oxigênio
5.
Chemosphere ; 328: 138598, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37028723

RESUMO

The feasibility of the degradation of phenazone (PNZ), a common anti-inflammatory drug used for reducing pain and fever, in water at neutral pH by an electrochemically assisted Fe3+-ethylenediamine disuccinate-activated persulfate process (EC/Fe3+-EDDS/PS) was investigated. The efficient removal of PNZ at neutral pH condition was mainly attributed to the continuous activation of PS via electrochemically driven regenerated Fe2+ from a Fe3+-EDDS complex at the cathode. The influence of several critical parameters, including current density, Fe3+ concentration, EDDS to Fe3+ molar ratio, and PS dosage, on PNZ degradation was evaluated and optimized. Both hydroxyl radicals (•OH) and sulfate radicals (SO4●-) were considered major reactive species responsible for PNZ degradation. To understand the mechanistic model of action at the molecular level, the thermodynamic and kinetic behaviors of the reactions between PNZ with •OH and SO4●- were theoretically calculated using a density functional theory (DFT) method. The results revealed that radical adduct formation (RAF) is the most favorable pathway for the •OH-driven oxidation of PNZ, while single electron transfer (SET) appears to be the dominant pathway for the reaction of SO4●- with PNZ. In total, thirteen oxidation intermediates were identified, and hydroxylation, pyrazole ring opening, dephenylization, and demethylation were speculated to be the major degradation pathways. Furthermore, predicted toxicity to aquatic organisms indicated that PNZ degradation resulted in products that were less harmful. However, the developmental toxicity of PNZ and its intermediate products should be further investigated in the environment. The findings of this work demonstrate the viability of effectively removing organic contaminants in water at near-neutral pH by using EDDS chelation combined with electrochemistry in a Fe3+/persulfate system.


Assuntos
Antipirina , Poluentes Químicos da Água , Quelantes , Radical Hidroxila , Água , Concentração de Íons de Hidrogênio , Oxirredução , Poluentes Químicos da Água/análise , Sulfatos/química , Cinética
6.
Water Res ; 226: 119200, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36257154

RESUMO

To improve the performance of the conventional coagulation process, a permanganate (Mn(VII)) pre-oxidation combined with Fe(III)/peroxymonosulfate (PMS) coagulation process (Mn(VII)-Fe(III)/PMS) that can significantly improve the removal of dissolved organic carbon (DOC), turbidity, and micropollutants is proposed in this study. Compared with conventional Fe(III) coagulation, the Mn(VII)-Fe(III)/PMS process can also significantly enhance the removal of iohexol and sulfamethoxazole in raw water. During this process, the primary reduction product, Mn(IV), after Mn(VII) pre-oxidation was adsorbed on the floc surfaces and involved in the Fe(III)/PMS process. The natural organic matter (NOM) in raw water mediated the redox cycle of iron. The synergistic effect of NOM, Fe, and Mn facilitated the redox cycle of Mn(III)/Mn(IV) and Fe(III)/Fe(II) to promote the activation of PMS. The sulfate radical (SO4•-) played an important role in the degradation of micropollutants. The formation potential of the detected volatile disinfection by-product (DBP) during the subsequent chlorination was reduced by 21.9% after the Mn(VII)-Fe(III)/PMS process. This study demonstrated the promising application of the Mn(VII)-Fe(III)/PMS process for coagulation and micropollutant control and illustrated the reaction mechanism. This study provides guidance for improving conventional drinking water treatment processes.


Assuntos
Compostos Férricos , Purificação da Água , Peróxidos , Oxirredução
7.
Sci Total Environ ; 850: 157987, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-35964753

RESUMO

The use of antibiotics has become an indispensable part of the production and life of human society. Among them, sulfonamide antibiotics widely used in humans and animals are considered to be one of the most crucial antibiotics. However, antibiotics are difficult to degrade naturally, leading to an accumulation in the environment and a potential hazard to human health. In this paper, WS2 as a co-catalyst could reduce trace Fe(III) to Fe(II) which exhibited a great activating ability to PS through the exposed W(IV) active sites, and formed the Fe(III)/Fe(II) cycle to degrade sulfachloropyridazine (SCP) continuously. This paper systematically discussed the degradation of SCP under different conditions in the PS/WS2/Fe(III) system, including the amount of WS2, Fe(III) concentration, PS concentration, initial pH, natural organic matter (NOM) and common anions (NO3-, Cl-, HCO3-, HPO42- and H2PO4-). The experimental results showed that PS/WS2/Fe(III) system possessed a strong degradation ability for SCP in a wide pH range. NO3- and Cl- could promote the degradation of SCP a little. HCO3-, HPO42- and H2PO4- could significantly inhibit the degradation of SCP. The main types of free radicals that degraded SCP were explored. In addition, the stability and reusability of WS2 were examined, and two possible degradation pathways of SCP were proposed.


Assuntos
Sulfacloropiridazina , Poluentes Químicos da Água , Ânions , Antibacterianos , Compostos Férricos/química , Compostos Ferrosos , Humanos , Oxirredução , Sulfatos/química , Poluentes Químicos da Água/análise
8.
Water Res ; 219: 118528, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35569275

RESUMO

Permanganate (Mn(VII)) is widely used as a mild oxidant in water treatment. However, the reaction rates of some emerging contaminants with Mn(VII) are extremely low. In this study, benzoquinone (BQ), a redox mediator with the important component in dissolved organic matter (DOM), enhanced the oxidation of bisphenol A (BPA) by Mn(VII) in a wide pH range of 4.0-10.0. The redox cycle of BQ would produce semiquinone radicals, which could act as ligands to stabilize the formed Mn(III) in the system to promote the oxidation of BPA. Notably, the presence of BQ might promote the formation of MnO2. A novel mechanism was proposed that singlet oxygen (1O2), Mn(III)-ligands (Mn(III)-L) and in-situ formed MnO2 were the main contributors to accelerate BPA degradation in the Mn(VII)/BQ system. Under acidic conditions, the in-situ formed MnO2 involved in the redox reaction and part of the Mn(IV) was reduced to Mn(III), indicating that the electron transfer of BQ promoted the formation of active Mn species and enhanced the Mn(VII) oxidation performance. Semiquinone radicals generated by BQ transformation would couple with the hydrogen substitution products of BPA to inhibit BPA self-coupling and promote the ring-opening reactions of BPA. Mn(VII)/BQ had better effect in raw water than in pure water, indicating that the Mn(VII)/BQ system has high potential for practical application. This study provided insights into the role of DOM in enhancing the Mn(VII) oxidation in water treatment.


Assuntos
Compostos de Manganês , Óxidos , Compostos Benzidrílicos , Benzoquinonas , Ligantes , Oxirredução , Fenóis , Quinonas
9.
Sci Total Environ ; 838(Pt 3): 156217, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35623523

RESUMO

Antimony (Sb) is a typical pollutant in sulfate-rich industrial wastewater. This study investigated the Sb removal efficiency in sulfate-rich water by anaerobic granular sludge (AnGS) and the stimulation of amended anthraquinone-2-sulfonate (AQS). Results showed that 89.0% of 5 mg/L Sb(V) was reduced by AnGS within 24 h, along with the observed first accumulation (up to 552.2 µg/L) and then precipitation of Sb(Ш); coexistence of 2 g/L sulfate inhibited the removal of Sb(V) by 71.4% within 24 h, along with gradual accumulation of Sb(Ш) by 3257.4 µg/L, indicating the potential competition of adsorption sites and electron donors between Sb(V) and sulfate. Amendment of 31 mg/L AQS successfully removed the inhibition from sulfate, contributing to 99.5% Sb(V) removal and minimum Sb(Ш) accumulation in Sb(V) + sulfate+AQS group. Further test results suggested that Sb(V) removal by AnGS was mainly through dissimilatory reduction instead of bio-sorption, while Sb(Ш) removal mainly relied on instant bio-sorption by AnGS followed by precipitation in the form of Sb2O3 and Sb2S3. Extracellular Polymeric Substances (EPS) characterization showed that AQS promoted the accumulation of Sb(V) and Sb(Ш) in EPS. High-throughput sequencing analysis showed the enrichment of sulfate-reducing bacteria (SRB) in Sb(V) + sulfate group and suppressed SRB growth in Sb(V) + sulfate+AQS group.


Assuntos
Esgotos , Águas Residuárias , Anaerobiose , Quinonas , Sulfatos , Óxidos de Enxofre
10.
Water Res ; 219: 118506, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35576760

RESUMO

The international campaign to ban bisphenol A (BPA) has resulted in increasing application of BPA substitutes. However, investigations have mainly been confined to the removal of single contaminant from the water, resulting in an inefficient burden. Furthermore, systematic study and synthetical discussion of bisphenol analogues (BPs) kinetics and transformation pathways were largely underemphasized. Chemical oxidation of BPA and four typical alternatives (i.e., bisphenol AF, bisphenol E, bisphenol F and bisphenol S) in a UV-activated persulfate system was examined in this study. The effects of persulfate (PS) dosage, pH and water matrix constituents (i.e., bicarbonate, chloride and natural organic matter) were comprehensively examined using a combination of laboratory experiments and mathematical modeling. According to our findings, the removal characteristics of different BPs employing SO4•--induced removal technology, including degradation mechanisms and influencing trends by water matrix, revealed similarly. The second order-rate constants of SO4•- reacting with BPs served as the main variables mediating the variation in degradation kinetics. Frontier molecular orbital theory and density functional theory suggested BPs molecules possessed the same susceptible positions to free radicals. In the UV-activated PS process, transformation pathways included hydroxylation, electron-transfer, substitution, and rearrangement triggered by ortho-cleavage, with certain intermediates exhibiting higher toxicity than the parent chemicals. The findings of this study provided valuable information to estimate potential environmental risks of using BPA alternatives.


Assuntos
Poluentes Químicos da Água , Compostos Benzidrílicos/química , Cinética , Fenóis , Sulfatos , Água , Poluentes Químicos da Água/química
11.
Environ Res ; 212(Pt B): 113289, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35427592

RESUMO

The cartridge filter (CF) as a "firewall" is crucial between pretreatment and nanofiltration (NF) units, but CF fouling with risk has received limited attention. The systematic autopsy for CFs (CF1 and CF2) applied in a NF drinking water plant was conducted to reveal CF fouling profile. Herein, scale blocks, irregular-shaped particles, and stacked-floc clusters were observed as the main morphologies of foulants. The major elements from foulants included Fe, Ca, Al, Mg, Na, P, and Si. The dissolved matters especially bioproducts resulted in the secondary pollution of permeated water. Biofouling was mainly caused by Proteobacteria phyla, and consisted of a large proportion of polysaccharides (11% and 25.1%), proteins (10.3% and 22.7%), lipids (21.7% and 22.4%), respectively. In addition, an obvious contrast was observed regarding the antifouling performance of CFs. The surface scaling degree of CF1 with horizontal irregular loose-pleats was more serious than CF2 with vertical regular compact-pleats, while the latter with high-density pleats appeared the higher fouling potential due to a greater capacity for organic foulants in the inner layers of "firewall" and better bio-diversity and bio-evenness of microbial communities. This study provides a deeper insight into CF fouling and contributes to the application of CFs.


Assuntos
Incrustação Biológica , Água Potável , Purificação da Água , Incrustação Biológica/prevenção & controle , Humanos , Membranas Artificiais , Purificação da Água/métodos
12.
Environ Sci Pollut Res Int ; 29(36): 54407-54420, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35301631

RESUMO

Sulfadiazine (SDZ) is a typical persistent sulfonamide antibiotic, which has been widely detected in natural drinking water sources. The degradation of SDZ by UV/Oxone (potassium monopersulfate compound) was explored in this study. The results showed that Cl- can effectively activate PMS to promote rapid degradation of SDZ in the Oxone process by forming chlorine in the system. Radical quenching tests suggested that radical oxidation, including HO•, SO4•-, and reactive chlorine species (RCS), played an important role by UV/Oxone. It further verified that concentration and distribution of HO•, SO4•-, and RCS were pH-dependent; RCS act as a major contributor at pH 6.0 and pH 7.0 to degrade SDZ in this process. The SDZ degradation rate was firstly increased and then decreased by Cl- and HCO3- (0-10 mM); HA (0-10 mg L-1) exhibited insignificant influence on SDZ degradation. The degradation pathways of SDZ during UV/Oxone and formation pathways of five disinfection byproducts during subsequent chlorination were proposed. The possible DBP precursors formed by SO2 extrusion, hydroxylation, and chlorination of SDZ during UV/Oxone pre-oxidation.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Cloro/química , Desinfecção/métodos , Halogenação , Cinética , Oxirredução , Estresse Oxidativo , Sulfadiazina , Ácidos Sulfúricos , Raios Ultravioleta , Poluentes Químicos da Água/análise , Purificação da Água/métodos
13.
Environ Sci Pollut Res Int ; 29(31): 47585-47597, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35184241

RESUMO

Acyclovir (ACV) is a commonly used antiviral drug; however, its poor bioavailability can lead to at least ng/L level residue in natural water. Sulfate radical, produced from persulfate (PS) by zero-valent iron (ZVI) activation, was demonstrated to effectively degrade ACV in this study. Influencing parameters, including ZVI dose, PS usage, initial ACV concentration, solution pH, and temperature, were evaluated to find the optimal degradation conditions. Intermediates were identified and main degradation pathways were proposed. Experiments showed that ACV degradation by ZVI/PS oxidation followed a pseudo zero-order reaction well (R2 > 0.99). At pH ≦ 9, the optimal combination was 0.4 mM PS with 1.2 mM ZVI, in order to completely remove 10 µM ACV during 60-min reaction. Heat activation of PS would hinder the effect of ZVI if temperature was 45 °C or above. ACV could be oxidized to four major degradation products, including methoxyacetic acid (P1, C3H6O3, m/z = 91), 1,1,2-trinitroethane (P2, C2H3N3O6, m/z = 165), trinitromethane (P3, CHN3O6, m/z = 151), and dinitromethane (P4, CH2N2O4, m/z = 105). Though the mineralization rate was not high (about 24.0%), ZVI/PS oxidation was proved to be an available treatment method for ACV-induced water pollution.


Assuntos
Ferro , Poluentes Químicos da Água , Aciclovir , Ferro/química , Cinética , Oxirredução , Poluentes Químicos da Água/química
14.
J Hazard Mater ; 431: 128513, 2022 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-35219060

RESUMO

BiFeO3 (BFO) nanocage prepared by metal-organic-framework derivatization (MOF-d) was adopted as activator to first investigate the effect mechanism of visible-light on naproxen-degradation via peroxymonosulfate (PMS) activation. MOF-d BFO expressed more excellent PMS activation ability than hydrothermal-synthetic BFO, due to highly ordered mesopores. A 3.0 times higher pseudo-first-order degradation rate constant was achieved after visible-light introduced. The quenching experiments indicated that the contribution of ROS in naproxen degradation followed the order of SO4•->1O2 ≈ â€¢OH in MOF-d BFO/PMS/dark system, while changed into h+>1O2 > >O2•-≈SO4•-> â€¢OH after visible-light introduced. EPR tests first revealed that visible-light promoted 1O2 yield (non-radical pathway) but suppressed •OH and SO4•- generation (free-radical pathways). N2-purging experiments further proved that 1O2 primarily originates from the reaction between h+ and PMS, equivalently to that between O2 and e--h+ in MOF-d BFO/PMS/vis system. Under visible-light, PMS activation via Fe (III) might be hindered by e- filling on Fe 3d orbital and anion PMS preferred to approach h+ rather than e-, resulting in the decrease of •OH and SO4•- yields. Moreover, PMS faces competition from adsorbed-O2 and oxygen-vacancies for e- capture. The degradation-pathways for naproxen in dark and under visible light were both proposed in MOF-d BFO/PMS system.


Assuntos
Naproxeno , Peróxidos , Luz , Oxigênio
15.
J Hazard Mater ; 429: 128370, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35121291

RESUMO

Iodinated trihalomethanes (I-THMs) have drawn increasing concerns due to their higher toxicity than those of their chlorinated and brominated analogues. In this study, I-THM formation was firstly evaluated for three treatment scenarios - (i) chlorine alone, (ii) chloramine alone, and (iii) mixed chlorine/chloramine - in the presence and absence of UV irradiation for the iodide-containing humic acid solution or natural water. The results indicated that I-THM formation decreased in the order of mixed chlorination/chloramination > chloramination > > chlorination, which fitted the trend of toxicity evaluation results using Chinese hamster ovary cells. Conversely, total organic halide concentration decreased in the order of chlorination > > chloramination ≈ mixed chlorination/chloramination. Besides, I-THM formation can be efficiently controlled in a UV-activated mixed chlorine/chloramine system. Influencing factors including pH values and Br-/I- molar ratios were also systematically investigated in a mixed chlorine/chloramine system. Enhanced I-THM formation was observed with increasing pH values (6.0-8.0) and Br-/I- molar ratios (1: 1-10: 1). The results obtained in this study can provide new insights into the increasing risk of I-THM formation in a mixed chlorine/chloramine system and the effective control of I-THMs in the iodide-containing water using UV irradiation.


Assuntos
Desinfetantes , Poluentes Químicos da Água , Purificação da Água , Animais , Células CHO , Cloraminas , Cloro , Cricetinae , Cricetulus , Desinfecção/métodos , Halogenação , Trialometanos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Purificação da Água/métodos
16.
Sci Total Environ ; 821: 153221, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35063517

RESUMO

Disinfection byproduct (DBP) formation is a potential concern with regard to MPUV/Cl2 application in water treatment. In this study, five typical amino acids (AAs) were selected to investigate their DBP alteration during short-term medium pressure (MP) UV/chlorine oxidation following post-chlorination relative to parallel dark controls. The five selected AAs include two potent DBP precursors (aspartic acid and tryptophan), one modest precursor (asparagine) and two poor precursors (phenylalanine and proline). MPUV/chlorine increased the total DBP formation and DBP-associated cytotoxicity of the two poor precursors phenylalanine (Phe) and proline (Pro) as well as their chlorine demands. Conversely, DBP formation and DBP-associated cytotoxicity of the three modest-to-potent DBP precursors showed the opposite changing trends due to MPUV/Cl2 oxidation. The two aromatic AAs (tryptophan and phenylalanine) were more readily to be affected by MPUV/Cl2 oxidation especially at acidic pH condition. Conversely, DBP formation and DBP-associated cytotoxicity of the three modest-to-potent precursors showed the opposite changing trends due to MPUV/Cl2 oxidation. Among the measured DBPs, the absolute formation potential changes of haloacetic acids and haloacetonitriles were the most prominent. Presence of bromide increased the trihalomethane formation potential of five AAs. Ammonia-spiked samples resulted in notably higher chlorine demands but slightly reduced DBPFP. Photonitration caused increased haloacetonitrile and trichloronitromethane formation but lower overall DBP formation potential and DBP-associated cytotoxicity. Results indicated that increased DBP formation of unreactive aromatic AAs may be problematic with respect to MPUV/Cl2 application, while the presence of inorganic ions may not contribute to further increase in calculated cytotoxicity of measured DBPs.


Assuntos
Desinfetantes , Poluentes Químicos da Água , Purificação da Água , Aminoácidos , Amônia , Brometos , Cloro/química , Desinfecção , Halogenação , Nitratos , Poluentes Químicos da Água/análise
17.
Ultrason Sonochem ; 82: 105906, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34979456

RESUMO

The present study comparatively investigated the ultrasonic degradation of ketoprofen (KET) and paracetamol (PCT) in water. Ultrasonic irradiation at 555 kHz achieved rapid degradation of KET and PCT in water, the removal efficiencies of KET (2.5-80 µM) and PCT (2.5-80 µM) reached 87.7%-100% and 50.6%-86.9%, respectively, after 10 min of reaction under an ultrasonic power of 60 W. The degradation behaviors of both KET and PCT followed the Langmuir-Hinshelwood model. KET was eliminated faster than PCT because of its higher hydrophobicity. Acidic media favored ultrasonic degradation of KET and PCT. Organic compounds in water matrices exerted a great negative effect on the ultrasonic degradation rates of KET and PCT major by competing with target compounds with the generated radicals at the bubble/water interfacial region. The effects of anions were species dependent. The introduction of ClO4- and Cl- enhanced KET and PCT degradation to different extents, while the introduction of HCO3- posed a negative effect on both KET and PCT. KET and PCT degradation are accompanied by the generation of several transform intermediates, as identified via LC/MS/MS analysis, and corresponding reaction pathways have been proposed. A human umbilical vein endothelial cell (HUVEC) toxicity evaluation indicated that ultrasonic treatment was capable of controlling the toxicity of KET or PCT degradation. Of note, the enhanced formation of disinfection byproducts (DBPs), i.e., trichloromethane (TCM) and trichloronitromethane (TCNM), was found due to chlorination after ultrasonic treatment for both KET and PCT.


Assuntos
Ultrassom , Acetaminofen , Desinfecção , Humanos , Cetoprofeno , Cinética , Espectrometria de Massas em Tandem , Água , Poluentes Químicos da Água/análise , Purificação da Água
18.
Anal Chim Acta ; 1191: 339358, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35033260

RESUMO

Size exclusion chromatography (SEC) is one of the most commonly used techniques to detect the molecular weight (MW) of dissolved organic matter (DOM) in aquatic environments. The significant improvement and focus of this method have been the application of multiple detectors, which contribute to providing fundamental physicochemical properties of various MW fractions. This study has coupled SEC with multiple detectors to simultaneously detect ultraviolet absorbance, fluorescence, dissolved organic carbon, and dissolved organic nitrogen of different MW fractions. The detection limits for the organic carbon and nitrogen detectors were 0.20 µg C L-1 and 0.14 µg N L-1, respectively. Furthermore, we gave an interpretation of the nature and evolution of DOM in surface water based on the comparison and analyses of the combined chromatogram obtained from multiple detectors. Fractions assigned as hydrophobic humic-like substances, hydrophilic humic-like substances, low-MW microbial extracellular metabolites and low-MW hydrophobic protein-like substances were first established in this study and attributed to the presence of a fluorescence detector. We believe that the developed method provides in-depth knowledge of the structure and composition of DOM and could be used as a potential analytical tool in environmental organic chemistry, humus chemistry and supramolecular chemistry.


Assuntos
Matéria Orgânica Dissolvida , Compostos Orgânicos , Carbono , Cromatografia em Gel , Substâncias Húmicas/análise
19.
Environ Sci Pollut Res Int ; 29(10): 14509-14521, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34617221

RESUMO

Extracellular organic matter (EOM) is an important precursor of disinfection by-products (DBPs). Nowadays, little is known about changes in molecular weight (MW) and hydrophilic (HPI)/hydrophobic (HPO) fractions of EOM during the entire algal growth phase. In this study, a combined approach of fractionation procedure and parallel factor (PARAFAC) analysis was applied to characterize the EOM during the entire growth phase of two algal species (M. aeruginosa and Synedra sp.), and investigated the relationships between fluorescent component and the DBP formation potential (FP) in MW and HPI/HPO fractions. Thereinto, three components (including one protein-like component (C1), one humic-like component (C2), and one fulvic acid-like component (C3)) were identified by the PARAFAC model. For two algae, the HPI and high MW (> 100 kDa) fractions were both the main components of algal EOM in the three growth phases in terms of the dissolved organic carbon. The high MW fraction had more C1 compared with other MW fractions, especially for M. aeruginosa. Besides, the formation risk of EOM-derived DBPs from M. aeruginosa was lower than that from Synedra sp. The result of this study showed the FP of DBPs varied with fluorescent components of algal EOM fractions and also indicated that the humic-like substances were tended to form trichloromethane and the tryptophan-like substances were associated with dichloroacetic acid by canonical correspondence analysis for both two algae.


Assuntos
Diatomáceas , Microcystis , Poluentes Químicos da Água , Purificação da Água , Desinfecção , Substâncias Húmicas , Pseudomonas aeruginosa , Poluentes Químicos da Água/análise
20.
Environ Sci Pollut Res Int ; 29(12): 17866-17877, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34674129

RESUMO

In this study, electrochemically activated peroxymonosulfate (EC/PMS) with a sacrificial iron electrode was used for the removal of chloramphenicol (CAP) from water. Compared to electrolysis alone, peroxymonosulfate (PMS) alone, and Fe2+/PMS, EC/PMS significantly enhanced the CAP degradation. Various parameters, such as the applied current, electrolyte concentration, and PMS dose, were investigated to optimize the process. In addition, acidic conditions facilitated the CAP degradation. The presence of Cl- slightly enhanced the CAP degradation, while both HCO3- and NO3- exhibited an inhibitory effect on the CAP degradation. The floccules were also analyzed after the reaction by XPS and XRD. Quenching experiments indicated that both sulfate radicals (SO4●-) and hydroxyl radicals (•OH) were responsible for the CAP degradation. In addition, the degradation products were identified by LC/TOF/MS, and the degradation pathways were proposed accordingly. These results indicated that EC/PMS is a promising treatment process for the remediation of water polluted by CAP.


Assuntos
Cloranfenicol , Poluentes Químicos da Água , Radical Hidroxila , Peróxidos , Água , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...