Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 36(47): 14276-14287, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33095588

RESUMO

Approximately half of all vaccines produced annually are wasted because effectivity is dependent on protein structure and heat exposure disrupts the intermolecular interactions needed to maintain the structure. Thus, most vaccines require a temperature-controlled supply chain to minimize waste. A more sustainable technology was developed via the adsorption of invasion plasmid antigen D (IpaD) onto mesoporous silica, improving the thermal stability of this protein-based therapeutic. Seven silicas were characterized to determine the effects of pore diameter, pore volume, and surface area on protein adsorption. The silica-IpaD complex was then heated above the IpaD denaturing temperature and N,N-dimethyldodecylamine N-oxide was used to remove IpaD from the silica. Circular dichroism confirmed that the adsorbed IpaD after the heat treatment maintained a native secondary structure rich in α-helix content. In contrast, the unprotected IpaD after heat treatment lost its secondary structure. Isotherms using Langmuir, Freundlich, and Temkin models demonstrated that the adsorption of IpaD onto silicas is best fit by the Langmuir model. If pores are less than 15 nm, adsorption is negligible. If the pores are between 15 and 25 nm, then monolayer coverage is achieved and IpaD is protected from thermal denaturing. If pores are larger than 25 nm, the adsorption is a multilayer coverage and it is easier to remove the protein from the silica because of a less-developed hydrogen bond network. This case study provides strong evidence that IpaD is thermally stabilized via adsorption on mesoporous silica with the proper range of pore sizes.


Assuntos
Dióxido de Silício , Adsorção , Plasmídeos , Porosidade , Estrutura Secundária de Proteína
2.
Protein Sci ; 23(10): 1461-78, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25043635

RESUMO

The ability of a GroEL-based bio-layer interferometry (BLI) assay to detect structurally altered and/or aggregated species of pharmaceutically relevant proteins is demonstrated. Assay development included optimizing biotinylated-GroEL immobilization to streptavidin biosensors, combined with biophysical and activity measurements showing native and biotinylated GroEL are both stable and active. First, acidic fibroblast growth factor (FGF-1) was incubated under conditions known to promote (40°C) and inhibit (heparin addition) molten globule formation. Heat exposed (40°C) FGF-1 exhibited binding to GroEL-biosensors, which was significantly diminished in the presence of heparin. Second, a polyclonal human IgG solution containing 6-8% non-native dimer showed an increase in higher molecular weight aggregates upon heating by size exclusion chromatography (SEC). The poly IgG solution displayed binding to GroEL-biosensors initially with progressively increased binding upon heating. Enriched preparations of the IgG dimers or monomers showed significant binding to GroEL-biosensors. Finally, a thermally treated IgG1 monoclonal antibody (mAb) solution also demonstrated increased GroEL-biosensor binding, but with different kinetics. The bound complexes could be partially to fully dissociated after ATP addition (i.e., specific GroEL binding) depending on the protein, environmental stress, and the assay's experimental conditions. Transmission electron microscopy (TEM) images of GroEL-mAb complexes, released from the biosensor, also confirmed interaction of bound complexes at the GroEL binding site with heat-stressed mAb. Results indicate that the GroEL-biosensor-BLI method can detect conformationally altered and/or early aggregation states of proteins, and may potentially be useful as a rapid, stability-indicating biosensor assay for monitoring the structural integrity and physical stability of therapeutic protein candidates.


Assuntos
Técnicas Biossensoriais/métodos , Chaperonina 60/química , Chaperonina 60/metabolismo , Anticorpos Monoclonais/metabolismo , Sítios de Ligação , Dicroísmo Circular , Fator 1 de Crescimento de Fibroblastos/metabolismo , Humanos , Imunoglobulina G/metabolismo , Interferometria , Cinética , Temperatura
3.
Biochemistry ; 52(37): 6335-47, 2013 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-23964683

RESUMO

Domain 2 of the anthrax protective antigen (PA) prepore heptamer unfolds and refolds during endosome acidification to generate an extended 100 Å ß barrel pore that inserts into the endosomal membrane. The PA pore facilitates the pH-dependent unfolding and translocation of bound toxin enzymic components, lethal factor (LF) and/or edema factor, from the endosome to the cytoplasm. We constructed immobilized complexes of the prepore with the PA-binding domain of LF (LFN) to monitor the real-time prepore to pore kinetic transition using surface plasmon resonance and biolayer interferometry (BLI). The kinetics of this transition increased as the solution pH was decreased from 7.5 to 5.0, mirroring acidification of the endosome. Once it had undergone the transition, the LFN-PA pore complex was removed from the BLI biosensor tip and deposited onto electron microscopy grids, where PA pore formation was confirmed by negative stain electron microscopy. When the soluble receptor domain (ANTRX2/CMG2) binds the immobilized PA prepore, the transition to the pore state was observed only after the pH was lowered to early (pH 5.5) or late (pH 5.0) endosomal pH conditions. Once the pore formed, the soluble receptor readily dissociated from the PA pore. Separate binding experiments with immobilized PA pores and the soluble receptor indicate that the receptor has a weakened propensity to bind to the transitioned pore. This immobilized anthrax toxin platform can be used to identify or validate potential antimicrobial lead compounds capable of regulating and/or inhibiting anthrax toxin complex formation or pore transitions.


Assuntos
Antígenos de Bactérias/química , Toxinas Bacterianas/química , Endossomos/metabolismo , Proteínas Imobilizadas/química , Membranas Intracelulares/metabolismo , Antígenos de Bactérias/ultraestrutura , Técnicas Biossensoriais , Humanos , Concentração de Íons de Hidrogênio , Interferometria , Cinética , Micelas , Microscopia Eletrônica , Dobramento de Proteína , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Receptores de Peptídeos/metabolismo , Ressonância de Plasmônio de Superfície
4.
Curr Top Med Chem ; 12(22): 2504-22, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23339304

RESUMO

Correcting aberrant folds that develop during protein folding disease states is now an active research endeavor that is attracting increasing attention from both academic and industrial circles. One particular approach focuses on developing or identifying small molecule correctors or pharmacological chaperones that specifically stabilize the native fold. Unfortunately, the limited screening platforms available to rapidly identify or validate potential drug candidates are usually inadequate or slow because the folding disease proteins in question are often transiently folded and/or aggregation-prone, complicating and/or interfering with the assay outcomes. In this review, we outline and discuss the numerous platform options currently being employed to identify small molecule therapeutics for folding diseases. Finally, we describe a new stability screening approach that is broad based and is easily applicable toward a very large number of both common and rare protein folding diseases. The label free screening method described herein couples the promiscuity of the GroEL binding to transient aggregation-prone hydrophobic folds with surface plasmon resonance enabling one to rapidly identify potential small molecule pharmacological chaperones.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Chaperonas Moleculares/farmacologia , Terapia de Alvo Molecular/métodos , Deficiências na Proteostase/tratamento farmacológico , Chaperonina 60/química , Simulação por Computador , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Terapia Genética/métodos , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Humanos , Mutação de Sentido Incorreto , Dobramento de Proteína , Deficiências na Proteostase/terapia , Ressonância de Plasmônio de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...