Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 89(3): e0218622, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36847541

RESUMO

Cytochrome P450 enzymes are promising biocatalysts for industrial use because they catalyze site-selective C-H oxidation and have diverse catalytic reactions and a broad substrate range. In this study, the 2α-hydroxylation activity of CYP154C2 from Streptomyces avermitilis MA-4680T toward androstenedione (ASD) was identified by an in vitro conversion assay. The testosterone (TES)-bound structure of CYP154C2 was solved at 1.42 Å, and this structure was used to design eight mutants, including single, double, and triple mutants, to improve the conversion efficiency. Mutants L88F/M191F and M191F/V285L were found to enhance the conversion rates significantly (i.e., 8.9-fold and 7.4-fold for TES, 46.5-fold and 19.5-fold for ASD, respectively) compared with the wild-type (WT) enzyme while retaining high 2α-position selectivity. The substrate binding affinity of the L88F/M191F mutant toward TES and ASD was enhanced compared with that of WT CYP154C2, supporting the measured increase in the conversion efficiencies. Moreover, the total turnover number and kcat/Km of the L88F/M191F and M191F/V285L mutants increased significantly. Interestingly, all mutants containing L88F generated 16α-hydroxylation products, suggesting that L88 in CYP154C2 plays a vital role in substrate selectivity and that the amino acid corresponding to L88 in the 154C subfamily affects the orientation of steroid binding and substrate selectivity. IMPORTANCE Hydroxylated derivatives of steroids play essential roles in medicine. Cytochrome P450 enzymes selectively hydroxylate methyne groups on steroids, which can dramatically change their polarity, biological activity and toxicity. There is a paucity of reports on the 2α-hydroxylation of steroids, and documented 2α-hydroxylate P450s show extremely low conversion efficiency and/or low regio- and stereoselectivity. This study conducted crystal structure analysis and structure-guided rational engineering of CYP154C2 and efficiently enhanced the conversion efficiency of TES and ASD with high regio- and stereoselectivity. Our results provide an effective strategy and theoretical basis for the 2α-hydroxylation of steroids, and the structure-guided rational design of P450s should facilitate P450 applications in the biosynthesis of steroid drugs.


Assuntos
Sistema Enzimático do Citocromo P-450 , Esteroides , Hidroxilação , Esteroides/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Oxirredução , Testosterona/metabolismo , Especificidade por Substrato
2.
Chem Biodivers ; 19(5): e202200177, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35426465

RESUMO

Cytochrome P450 enzymes (CYPs or P450s) are ubiquitous heme-dependent enzymes that catalyze the monooxygenation of non-activated C-H bonds to modify the structure of the substrate. In this study, we heterologously expressed CYP107X1 from Streptomyces avermitilis and conducted in vitro substrate screening using the alternative redox partners putidaredoxin and putidaredoxin reductase. CYP107X1 catalyzed the 16α-hydroxylation of progesterone with regio- and stereoselectivity. The spectroscopic analyses showed that CYP107X1 bound progesterone with a relatively high Kd value of 65.3±38.9 µM. The Km and kcat values for progesterone were estimated to be 47.7±12.0 µM and 0.30 min-1 , respectively. Furthermore, a crystal structure was obtained of CYP107X1 bound with glycerol from the buffer solution. Interestingly, a conserved threonine was replaced with asparagine in CYP107X1, indicating that it may adopt an unnatural proton transfer process and play a crucial role in its catalytic activity.


Assuntos
Progesterona , Streptomyces , Sistema Enzimático do Citocromo P-450/metabolismo , Hidroxilação , Progesterona/metabolismo , Streptomyces/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA